

accentureoperations

Oracle Exadata Security – BIWA 2017

Agenda of the meeting -

- State of Database Security
- Exadata Security
- 360 view of Security with Exadata
- GDPR
- Oracle 12.2 new features

Chaitanya Geddam Oracle Security Practice Lead

Julian Dontcheff Oracle Technology Practice Executive

State of Database Security

WHY DATABASE SECURITY?

- Increase in vulnerabilities related to databases, and internal users having access to data
- Perimeter/network security alone is not enough

WHAT SHOULD SECURITY EXECUTIVES BE CONCERNED ABOUT?

- Do the IT policies adhere to industry standards with regards to database security?
- What measures are in place to protect from unauthorized access or misuse by privileged users?
- What measures are in place to protect from data corruption and unrecoverable and intentional damage to data?

¹ 2015 Cost of Cyber Crime Study Global – Ponemon Institute ² 2015 Data Breach Investigations Report – Verizon

Copyright © 2016 Accenture All rights reserved.

State of Exadata Security

In build Perimeter Security

A complete engineered system that is ideal for consolidation and performance of Oracle Databases.

High Components of DB security:

- Perimeter Security
- Defence in depth
- Open Security by default
- DB Scoped Security and ASM Scoped Security (CellKey.ora – Key, asm, realm)
- Infiniband, Open Security by default but particular gateways can be assigned to segregate the networks.

- Auditd monitoring enabled (/etc/audit/ audit.rules)
- Cellwall: iptables firewall
- Boot loader password protected

Intrusion Detection System (IDS) – Oracle Audit Vault and DB Firewall

Oracle Advanced Security

INTRODUCTION

Oracle Advanced Security components include features of User administration and authentication, providing credentials

checks, centralized user management and TNS management.

SECURITY FEATURES TO BENEFIT ORACLE DATABASES

•	Oracle Internet Directory	
	Oracle Virtual Directory	
	Virtual Private Database	
	Oracle Universal Directory	
	Oracle Key Vault	
	Oracle Database Vault	
-	Oracle Audit Vault	

MAJOR COMPONENTS

- Oracle Unified Directory provides a centralized management of USER Stores, along with User administration, user authentication and authorization
- Oracle Key Vault provides capability in storing the Oracle Encryption keys
- Oracle Audit Vault provides capability for centralized database auditing
- Oracle Database Vault enables Privilege access management to comply with SoD governance
- Oracle Virtual Private Database allows granular access to specific set of dataset

Copyright © 2016 Accenture All rights reserved.

Database Security Health Check

INTRODUCTION

The Health check for Oracle database identifies the security risks which include violations to Access Control, Auditing, Authentication, Encryption, Integrity Controls and Application Security.

MAJOR SECURITY ISSUES IDENTIFIED?

Identifies

- Default ports for database and cluster ware listeners
- Access Control violations and Authentication violations
- Elevated access violations

- Cross site scripting violations
- Default passwords and violations to best practices for password management
- Analytics and reports of database auditing information

GDPR – General Data Protection Regulation using Oracle Security

GDPR recognizes a EU citizens privacy information and the rights to it as a "Fundamental" right of the individual (ex: Bill of Right)		s "GD	"GDPR is a regulation" GDPR is a "LAW" versus a directive and it will have the enforcement and associated fines of a regulation		"GDPR Fines" The GDPR recognizes that EU privacy data could be valued at \$1 Trillion Euros and the non-compliance of the proper handling of this data can lead to fines of 4% or annual revenue		Controllers & Processors	
		GDPR is and it wil assoc					The EU D controllers c data where control	The EU Data Directive only held controllers of data responsible for the data whereas the GDPR holds both controllers and processors
EU Privacy		EU Data Directive compliance date		Safe Harbor ruled "Inadequate" by EU courts October 2015		GDPR (General Data I Regulation) Ra March 2016	Privacy lified	Safe Harbor v 2.0
Timeline	\bigcirc		\bigcirc					
	1996 EU Data Directive Ratified		2000 Safe Harbor goes into effect		January 2016 Safe Harbor Grace Period End Date		March 2018 GDPR Compliance Date	

GDPR / Accenture Oracle Solution

dbname:orcl version:11.2.0.4.0 host:jarvisdb02 license:T days:9 from:2017-01-22 to:2017-02-01 today:2017-01-31/21:09:37

Roles (58) <u>html</u>

- Sensitive Roles Granted (38) html
- Users with CATALOG Roles (18) html

ALTER TABLESPACE SYSTEM ENCRYPTION ONLINE ENCRYPT FILE NAME CONVERT=('system01.dbf','system01 enc.dbf');

- To encrypt an entire database, you must encrypt all the tablespaces within this database, including the Oracle-supplied SYSTEM, SYSAUX, UNDO, and TEMP tablespaces
- For a temporary tablespace, drop it and then recreate it as encrypted do not specify an algorithm
- Oracle recommends that you encrypt the Oracle-supplied tablespaces by using the default tablespace encryption algorithm, AES128

ALTER TABLE employee REKEY USING 'GOST256';

- By default, Transparent Data Encryption (TDE) Column encryption uses the Advanced Encryption Standard with a 192-bit length cipher key (AES192), and tablespace and database encryption use the 128–bit length cipher key (AES128)
- 12.2 provides advanced security Transparent Data Encryption (TDE) support for these encryption algorithms:
 - SEED (Korea Information Security Agency (KISA) for South Korea
 - ARIA (Academia, Research Institute, and Agency) for South Korea
 - GOST (GOsudarstvennyy STandart) for Russia

Setting Future Tablespaces to be Encrypted

ALTER SYSTEM SET ENCRYPT NEW TABLESPACES = CLOUD ONLY;

- CLOUD_ONLY transparently encrypts the tablespace in the Cloud using the AES128 algorithm if you do not specify the ENCRYPTION clause of the CREATE TABLESPACE SQL statement: it applies only to an Oracle Cloud environment
- ALWAYS automatically encrypts the tablespace using the AES128 algorithm if you omit the ENCRYPTION clause of CREATE TABLESPACE, for both the Cloud and premises scenarios

EXEC SYS.XS_DATA_SECURITY.ENABLE_OBJECT_POLICY(policy =>'EMPLOYEES_DS',schema=>'hr',object=>'employees');

- Beginning with Oracle Database 12c Release 2 (12.2), Real Application Security introduces schema level privileges, which allows a policy administrator to create, update, and apply a policy in only the granted schema and administer policy enforcement within one application
- This level of policy administration is essential in a Cloud computing scenario where each application may be running under one or more schemas

GRANT SYSRAC to JULIAN;

- SYSRAC is a new role for Oracle Real Application Clusters (Oracle RAC) management
- This administrative privilege is the default mode for connecting to the database by the clusterware agent on behalf of the Oracle RAC utilities such as srvctl
- For example, customers can create a named administrative account and grant only the administrative privileges needed such as SYSRAC and SYSDG to manage both Oracle RAC and Oracle Data Guard configurations

Strong Password Verifiers by Default

SQLNET.ALLOWED_LOGON_VERSION_SERVER=12a

- The newer verifiers use salted hashes, modern SHA-1 and SHA-2 hashing algorithms, and mixed-case passwords
- SQLNET.ALLOWED_LOGON_VERSION_SERVER=8 generates all three password versions 10G, 11G, and 12C
- SQLNET.ALLOWED_LOGON_VERSION_SERVER=12 generates both 11G and 12C password versions, and removes the 10G password version
- SQLNET.ALLOWED_LOGON_VERSION_SERVER=12a generates only the 12C password version

Automatic Locking of Inactive User Accounts

CREATE PROFILE time_limit LIMIT INACTIVE_ACCOUNT_TIME 60;

- Within a user profile, the INACTIVE_ACCOUNT_TIME parameter controls the maximum time that an account can remain unused
- The account is automatically locked if a log in does not occur in the specified number of days
- Locking inactive user accounts prevents attackers from using them to gain access to the database
- The minimum setting is 15 and the maximum is 24855
- The default for INACTIVE_ACCOUNT_TIME is UNLIMITED

Chaitanya Geddam

Oracle Database Security Practice Lead <u>chaitanya.geddam@accenture.com</u> **Julian Dontcheff** Oracle Technology Practice Executive

julian.dontcheff@accenture.com