Leveraging Oracle Database In-Memory to accelerate Oracle Business Intelligence Analytics Applications

THE Big Data + Analytics + Spatial + Cloud + IoT + Everything Cool User Conference January 31 - February 2, 2017

Kai Yu

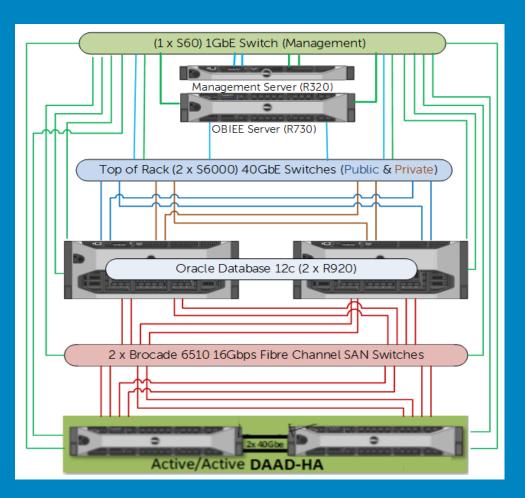
Oracle Solutions Engineering

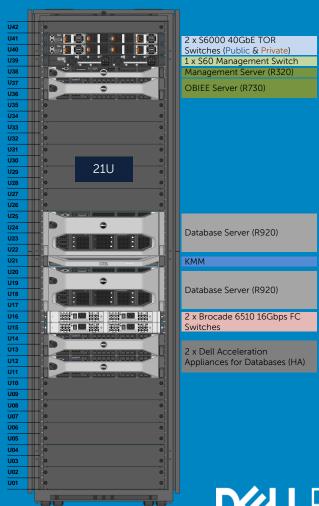
Dell EMC

Linkedin: https://www.linkedin.com/in/kaiyu1/


Twitter: oky_austin1

- Senior Principal Engineer
- Dell/EMC Oracle Solutions Engineering
- 25+ years working with IT Industry
- Specializing in Oracle Database, Cloud, Virtualization
- Author(35 articles/book) and Speaker(135+ sessions)
- Oracle ACE Director
- 2011 OAUG Innovator of Year
- 2012 Oracle Excellence Award- Technologist of the Year: Cloud Architect by Oracle Magazine
- My Blog: http://kyuoracleblog.wordpress.com/



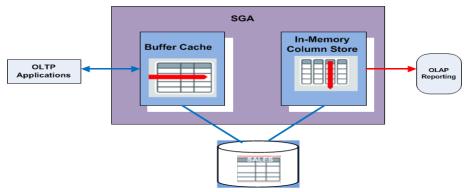


Related Work: Dell Integrated Systems for Oracle Business Analytics -Ready Infrastructure

Agenda

- Oracle 12c In-Memory Database (IMDB) Option
- Oracle 12cR2 IMDB new features
- Oracle Database and BI services in Oracle Cloud
- Leveraging Oracle IM Memory Advisor
- Case Studies of IMDB for Oracle IBEE
- Questions

Oracle 12c In-Memory Option


Oracle 12c In Memory Option

- Oracle 12c Database Introduced Database In-Memory option:
 - Accelerates analytics by orders of magnitude.
 - Speeding up mixed-workload OLTP.
 - Transparent to applications.
- Dual-Format of Architecture in Oracle 12
 - Oracle traditional row based :
 - Row format data stored in storage
 - Row format data stored in buffer cache in SGA
 - Good for OLTP (insert/update/delete) operations
 - Oracle 12c introduced In-memory option
 - Introduced with Oracle 12.1.0.2
 - Column format In-Memory column storage in SGA
 - A New component of Oracle Database SGA.
 - Coexist with database buffer cache (row format)
 - Good for OLAP applications

Oracle 12c In-Memory Option

The Dual Format Architecture can be illustrated as

- The In-Memory Column Store:
 - A new component called In-Memory Area in SGA
 SQL> alter system set inmemory_size = 100G scope=spfile;

```
SQL> SQL> SQL> startup
ORACLE instance started.

Total System Global Area 2.6521E+11 bytes
Fixed Size 7662672 bytes
Variable Size 2.7380E+10 bytes
Database Buffers 1.2992E+11 bytes
Redo Buffers 529207296 bytes
In-Memory Area 1.0737E+11 bytes
Database mounted.
Database opened.
```

Alter SYSTEM SET INMEMORY_QUERY=DISABLE Alter SYSTEM SET INMEMORY_QUERY=ENABLE

- Help Analytical processing through reading data from the In memory column store
- Help OLTP by allowing you drop indexes that were created for reporting

Oracle 12c In-Memory Option

- Select contents to populate the In-Memory column store:
 - Tableaspace level: alter tablespace data MEMORY;
 - Table level: alter table sales INMEMORY PRIORITY CRITIAL;
 alter table sales INMEMORY NO INMEMORY(prod_id)
 - background process to populate in-memory store:

```
14737
oracle
                        0 14:30 ?
                                          00:00:17 ora w004 pocdb1
                                          00:00:15 ora w005 pocdb1
oracle
          14759
                        0 14:30 ?
oracle
          14763
                        0 14:30 ?
                                          00:00:12 ora w006 pocdb1
oracle
          14765
                        0 14:30 ?
                                          00:00:12 ora w007 pocdb1
          17515
                                          00:00:06 ora w008 pocdb1
oracle
                        0 14:38 ?
oracle
                                          00:00:06 ora w009 pocdb1
          19344
                        0 14:43 ?
                                          00:00:00 ora w00a pocdb1
          19346
oracle
                        0 14:44 ?
oracle
         112632
                        0 13:26 ?
                                          00:00:22 ora w000 pocdb1
         112634
                     1 0 13:26 ?
                                          00:00:22 ora w001 pocdb1
oracle
```

- Features to accelerate query execution: In-Memory Scan, In-Memory Storage Index, SIMD Vector Processing, In-Memory Joins, in Memory Aggregation
- In Memory Option: Application transparent, no need to modify application.
- How to determine if In-Memory option takes effect. Look the INMEMORY key word in query plan such as:

	PLAN_TABL	E_OUTPUT		
	17 18 19 20 21	TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER TABLE ACCESS INMEMORY FULL	EDAPIHDR_BASE EDAPILIN_BASE EDAPIQ_BASE	
- 1				_

New Features Summary:

- In-Memory Column Store dynamic resizing

The size of the In Memory can be dynamically increased without reopening the database

In-Memory Expressions

Frequently used expression for population in the IM column store

In FastStart

Database reads data from the FastStart area and populate IM column store

Object-level support for service

Control the population of an object for the database instances where a service runs

In column storage on a standby database

Enable an IM column store in an Oracle Active Data Guard standby database.

ADO support for the IM column store

ADO policies to evict objects from IM column store based on Heat Map statistics

Join groups

List two joined columns and help eliminate the performance overhead of decompressing and hashing column values during the join operation.

In-Memory Column Store dynamic resizing

Prerequisites: the column store enabled, the comparability level 12.2.0 or higher, db instance started with spfile, new size at least 128M bigger (if smaller, use scope=spfile) sqlplus>alter system set set inmemory_size = 60000M scope=both

In-Memory expressions (IME)

"Pre-compute" frequently evaluated expressions IME can be created for:

- -Virtual columns
- Automatic capture
 - . Frequently evaluated query expression
 - . Other useful internal computation(join hash values, predicate evaluations, data conversion)
- . Reduce computationally expensive repeated evaluations
- . Significant performance increases
- . Example: Select price*Tax_ratio from sales where state='TX'

Identify IM-memory expression

DBMS_INMEMORY_ADMIN.IM_CAPTURE_EXPRESSIONS identifies "hot" expression, called IM-Memory Expressions (IM Expression)

- -auto-detected :hot expression
- -One or more columns of a single row if a table, possible some constrains
- Have a 1 to 1 mapping with rows in a table

select employ_name, Round(Salary*12)/52,2) as "weekly_sal from employees

Round(Salary*12)/52,2) is frequently and computationally intensive a good candidate for IM expression.

. Populate IM-memory expression

The INMEMORY_EXPRESSIONS_USAGE determines which type of IM expression is populated:

. Enable, Static_only, Dynamic only, Disable modes.

In Memory Virtual Columns

- The value on an IM virtual column derived by an expression.

Example, in Sales table: sale_price=price * (1+tax_ratio), the value is pre-calculated and

is stored in the IM column store to improve the query performance

IM expression and IM virtual column : same underlying mechanism
 IM virtual columns are user created and exposed,
 IM expressions are database created and hidden.

Set to Manual: need to explicitly add the column into IM columns store: alter table sales add (sale_price AS price * (1+tax_ratio);

- Populate virtual columns
 INMEMORY_VIRTUAL_COLUMNS = (MANULA, ENABLE, DISABLE)
- Example:

```
alter table sales add (sale_price AS price * (1+tax_ratio);
Alter table set INM EMORY_VIRTUAL_COLUMNS = ENABLE SCOPE=SPFILE;
```


Join groups

- The IM columns store enhances the performance of joins when the two join tables are stored in Memory
- Join Group: list two joined columns and help eliminate the performance overhead of decompressing, hashing column values during the join operation
- Create join groups:

Example: create a join group between part and lineitem on the partkey create inmemory join group jgrp_lo_part(lineitem(l_partkey), part(p_partkey)

---Compare the performance with or without join group:

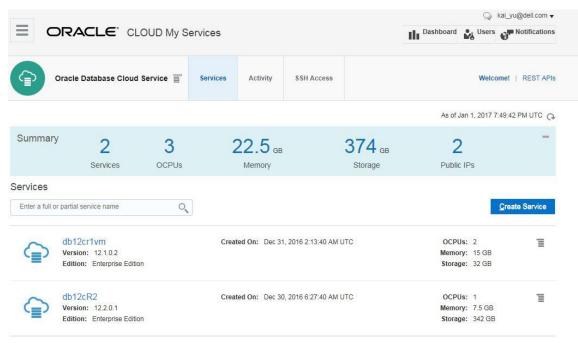
without Join group:

With Join group

```
SELECT /*+ no_vector_transform */
count (*),
count (1.1_orderkey),
count (p.p_type)
FROM Lineitem 1, part p
WHERE 1.1_partkey = p.p_partkey
AND 1.1_discount > 0;

Script Output × Autotrace ×

SQL | 253.044 seconds
```



Oracle Database and Bl Services in Oracle Cloud

Oracle Database Cloud Service in Oracle Cloud

Oracle Database Cloud service in Oracle Cloud

- Oracle Database Cloud Service
- Oracle Exadata Express Service
- Two levels of Oracle Database Cloud Service
 - Virtual Images level: Virtual OS, customers to install Oracle
 - Oracle Database Cloud Service Level
 Oracle Database service already installed. Oracle RAC not supported
 Two Oracle versions supported: 12.1.0.2 and 12.2.0.1: You can try 12.2.0.1 now

Oracle Business Intelligences in Oracle Cloud

Oracle Business Intelligences in Oracle Cloud

- Offer the full array of intuitive BI tools
- Intuitive Cloud Experience
 Friendly interactive interface has built-in guidance and tutorials to get users productive quickly
- Advanced Analysis and Visualizations
 Select interactive visualization and easy create advanced calclations to reveal the insights in your data
- Interactive Dashboards
 Configurable dashboards that allow you to quick analyze and manage activity across the entire system.
- Products:

Business Intelligence Cloud Service

Oracle Database Schema Service

Oracle Database Cloud Service

- Oracle In-Memory Advisor
 - Help to answer these questions:
 - Which tables and/or partitions should be marked for In-Memory column store
 - How to size the In memory.
 - An Oracle new feature, licensed as part of the Database Tuning pack
 - MOS note: 1965343.1 Oracle In-Memory Advisor (include <u>twp_oracle_database_in_memory_advisor.pdf</u> whitepaper)
- Two whitepapers: Oracle Database In-Memory Advisor and <u>Oracle Database</u> <u>In-Memory Advisor Best practices</u> published in February 2015
- How it works:
 - 1. Differentiates analytics processing from other database activity based upon SQL plan cardinality, Active Session History (ASH), use of parallel query, and other statistics.
 - 2. Estimates analytic processing performance improvement factors based upon the following:
 - > Eliminating user I/O waits, cluster transfer waits, buffer cache latch waits,
 - > Certain query processing advantages related to specific compression types.
 - > Decompression cost heuristics per specific compression types.
 - > SQL plan selectivity, number of columns in the result set, etc.

- Download and Install In-Memory Advisor
 - Download imadvisor.zip from Oracle ,copy to DB server and unzip it

```
[oracle@inmem1 in memory]$ ls
dbmsimadvint.plb
                                  imadvisor DataPump.sql
dbmsimadv.sql
                                  imadvisor export.sql
                                                                        instimadv.sql
imadvisor analyze and report.sql
                                  imadvisor fetch recommendations.sql prvtimadvint.plb
imadvisor awr augment export.sql
                                  imadvisor fetch temp.sql
                                                                       prvtimadv.plb
imadvisor awr augment import.sql
                                  imadvisor load report templates.sql schmimadv.sql
imadvisor awr augment tables.sql
                                  imadvisor spool debug.sql
 madvisor clone view.sql
                                  imadvisor version.sql
```

- Installed in SQLPLUS with sysdba privilege
 - SQL> @instimadv.sql
 - \square Do you currently have a valid Oracle Tuning Pack license with this database (Y/N)?
 - Create a new user called IMADVISOR ans schema
 - Create DBMS_INMEMORY_ADVISOR package
 - Need to provide the connection string (from TNSNAME entry)
 - Provide the Oracle directory object IMADVISOR_DIRECTORY directory that In-Memory Advisor uses
 - Need to specify the users that will use this tool for tuning:
 - It will GRANT EXECUTE ON DBMS_INMEMORY_ADVISOR to the users
 - You can add more users by granting EXECUTE ON DBMS_INMEMORY_ADVISOR to additional users later

- Running In-Memory Advisor
 - Run script imadvisor_analyze_and_report.sql as a user with the privilege to execute the DBMS_INMEMORY_ADVISOR package:

SQL> @imadvisor_analyze_and_report

Specify the IM task name

The IM Advisor generates a report as imadvisor_<taskname>.html file

in the current working directory

The sql file is generated as imadvisor_sql_<taskname>.sql

Enter value for im_task_name: test

IM Task name Specified: test Enter begin time for report: ... Enter value for begin_time: -1:30 Report begin time specified: -1:30

...

Enter duration in minutes starting from begin time:

Defaults to SYSDATE - begin_time

Enter value for duration: 60 Report duration specified: 60

Using 2016-Jan-14 09:33:13.000000000 as report begin time Using 2016-Jan-14 10:33:13.000000000 as report end time

IM Advisor: Adding Statistics.. IM Advisor: Adding Statistics..

IMADVISOR: Finished Adding Statistics IMADVISOR: Finished Executing the task IM Advisor: Generating Recommendations...

imadvisor_cmpldaad.html

imadvisor_sql_cmpldaad.html

imadvisor_object_cmpldaad.html

- Output of In-Memory Advisor
 - imadvisor_taskname.html
 - Summary of the total database time analyzed
 - Percentage for Database Time for Analytics Processing
 - In-Memory sizes vs the estimated benefit

Percentage of Maximum Recommended In-Memory Size	Percentage of Current SGA Size (39GB)	In-Memory Size	Estimated Analytics Processing Time Reduction (Seconds)	Estimated Analytics Processing Performance Improvement Factor
100%	116%	45GB	4013	2.9X
95%	110%	43GB	1562	1.3X
90%	104%	41GB	1562	1.3X

 Recommending the top objects to place in memory and compression type and estimated benefit

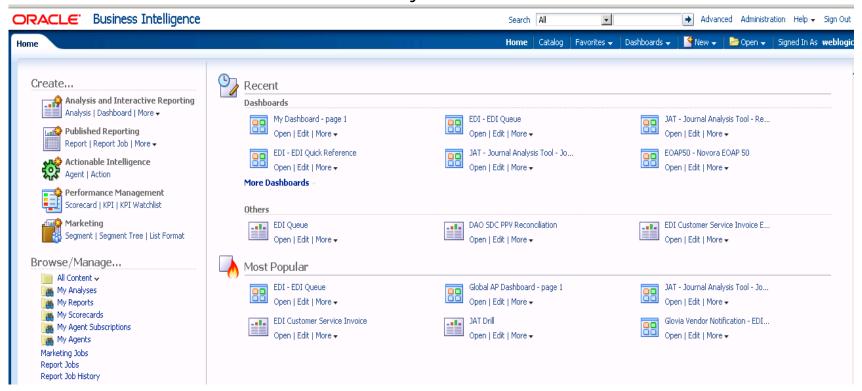
Object Type	Object	Compression Type	Estimated In- Memory Size	Analytics Processing Seconds	Analytics	Estimated Analytics Processing Performance Improvement Factor	Benefit / Cost Ratio (Reduced Analytics Processing / In-Memory Size)
TABLE	CMPLUSER.DISTRICT	Memory compress for query low	1MB	110	81	3.8X	4489 : 1
TABLE	CMPLUSER.ORDERS	Memory compress for query low	2GB	1823	1481	5.3X	42 : 1
TABLE	CMPLUSER.STOCK	Memory compress for query low	36GB	3314	2451	3.8X	4:1

Oracle Exalytics In-Memory vs 12c In-Memory Database

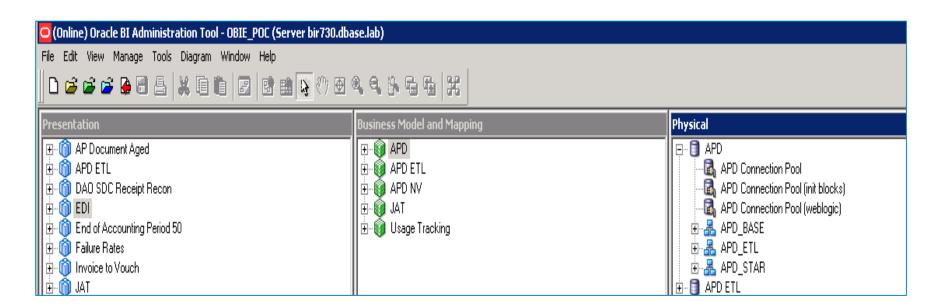
Oracle Exalytics In-Memory Machine

- Oracle Engineered System for Extreme Analytics: Delivers extreme inmemory analytics performance, two main components together
 - Optimized Oracle Business Intelligence Foundation Suite
 - Oracle TimesTen In-Memory Database for Exalytics

Oracle Exalytics In-Memory Machine


- Oracle Exalytics In-Memory Machine features
 - Single X86-64 server: 4 X Intel Xenon E7-4800 processors, 2 TB RAM, 2
 QDR 40Gb/s Infiniband Ports, 2X 10Gbps Ethernet ports, 6 X 400G Flash
 PCI-e
 - Oracle Business Intelligence Foundation Suite including Oracle Essbase
 - Oracle TimesTen In-Memory Database for Exalystics
 - Exalystic In-Memory Software
- Difference between TimesTen In-Memory Database vs Oracle 12c In-Memory
 - TimesTen In-Memory Database for Exalystics is a full memory database designed to run Analytics.
 - TimesTen In-Memory Database runs on the same server as OBIEE
 - Tightly connected between BI and TimesTen In-Memory Database
 - Oracle 12c In-Memory is a feature added to Oracle Database
 - Oracle 12c In-Memory works for both OLAP and OLTP mixed workloads

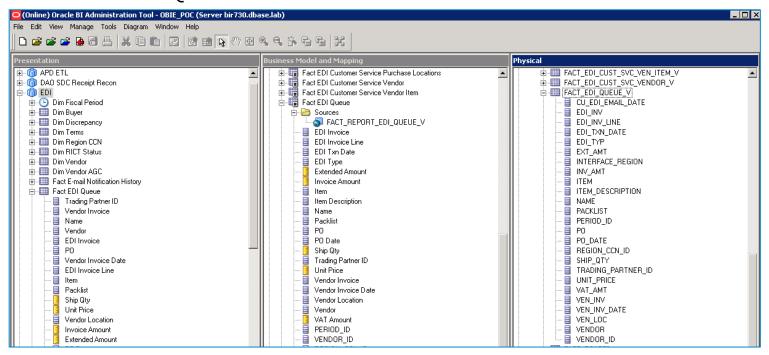
Oracle OBIEE with Oracle 12c In–Memory Database


Oracle Business Intelligence Enterprise edition 11g

- Oracle OBIEE: Business intelligence and Analytics Platform and common infrastructure for reports, scorecards, dashboards, ad-hoc analysis, OLAP analysis
 - OBIEE 11g Interactive Dashboards solution for Interactive Dashboards
 - Ad hoc Analysis and Interactive Reporting
 - Oracle BI Mobile for Mobile Analytics

Oracle OBIEE with Oracle 12c In-Memory Database

- Oracle BI server Architecture
 - Oracle BI server connects to Oracle Database through ODBC/JDBC
 - Oracle BI present a logic schema view independent of physical database
 - BI server translates the logic SQL to physical SQL
 - Oracle BI Administration tools shows the three layers: Presentation Business Model and Mapping, Physical


POC: Accelerates BI with Oracle 12c In-Memory

Basic Idea:

- On physical level BI reports usually involve a large full table scan and complex join operation.
- Full tablescan operation is very expensive in large storage IO operation.
- Load the partially or the entire table to In-Memory store to reduce the storage IO for the full tablescan.
- How to identify the tables to load into In Memory store: in manual way
 - Start with the slow report and find the presentation layer the report reads
 - Through the mapping from presentation layer to the physical layer to identify the physical SQL for the report
 - Through the physical SQL to identify the underneath full table scan operation.
 - . The rest presentation use the EDI Queue report as an example to use the process.

An Example: Accelerate BI Report with Oracle 12c

- Identify Physical SQL layer for the report :
 - From the Dashboard report definition to identify the presentation layer
 Fact EDI Queue .
 - Through the presentation layer to find the Business Model and mapping on Fact EDI Queue and identify the physical database view : FACT_EDI_QUEUE_V as shown below:

An Example: Accelerate BI Reports with Oracle 12c

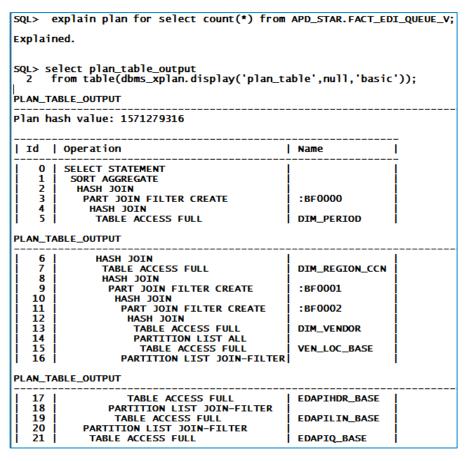
- Review the definition of the physical View :
 - View name: FACT_EDI_QUEUE_V and found underneath physical tables
 - Identified four large tables:

```
EDAPIHDR_BASE, EDAPIQ_BASE, EDAPIQ_BASE VEN_LOC_BASE
```

- Populate In-Memory Column store with these four tables:
 - SQL> alter table APD_BASE.EDAPILIN_BASE inmemory priority high;
 SQL> alter table APD_BASE.EDAPIQ_BASE inmemory priority high;
 SQL> alter table APD_BASE.EDAPIHDR_BASE inmemory priority high;
 SQL> alter table APD_BASE.VEN_LOC_BASE inmemory priority high;
- Check size of the segments in the In-Memory

```
SQL> select SEGMENT_NAME , INMEMORY_SIZE from v$im_segments;
```

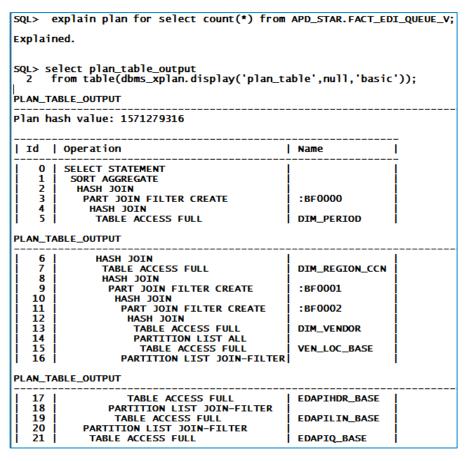
SEGMENT_NAME INMEMORY_SIZE



_ -

VEN_LOC_BASE 1279648
EDAPIQ_BASE 291168512
EDAPIHDR_BASE 961496576
VEN_LOC_BASE 1279648
EDAPILIN_BASE 930710528
VEN_LOC_BASE 1279648

An Example: Accelerates BI Reports with Oracle 12c


Compare the Query plans on : FACT_EDI_QUEUE_V Not In-Memory In-Memory

SQL> explain plan for select count(*) from APD_STAR.FACT_EDI_QUEUE_V;								
Explained.								
SQL> select plan_table_output 2 from table(dbms_xplan.display('plan_table',null,'basic'));								
PLAN_TABL	E_OUTPUT							
Plan hash	value: 1571279316							
Id O		Name						
	ELECT STATEMENT	 						
	SORT AGGREGATE	!						
2 3	HASH JOIN PART JOIN FILTER CREATE	:BF0000						
4	HASH JOIN	.65-0000						
j <u> </u>	TABLE ACCESS FULL	DIM_PERIOD						
PLAN_TABL	PLAN_TABLE_OUTPUT							
6	HASH JOIN	 						
7	TABLE ACCESS FULL	DIM_REGION_CCN						
8	HASH JOIN	· PE0001						
10	PART JOIN FILTER CREATE HASH JOIN	:BF0001						
li ii i	PART JOIN FILTER CREATE	:BF0002						
12	HASH JOIN	i						
13	TABLE ACCESS FULL	DIM_VENDOR						
14	PARTITION LIST ALL							
15 16	TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER	VEN_LOC_BASE						
I TO I SAKITITOM FT21 JOTM-LTFIEK								
PLAN_TABLE_OUTPUT								
17	TABLE ACCESS INMEMORY FULL	EDAPIHDR_BASE						
18		!						
19 20	TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER	EDAPILIN_BASE						
20	TABLE ACCESS INMEMORY FULL	EDAPIO BASE						
<u></u>								

An Example: Accelerate BI Reports with Oracle 12c

Compare the Query plans on FACT_EDI_QUEUE_V Not In-Memory In-Memory

SQL> explain plan for select count(*) from APD_STAR.FACT_EDI_QUEUE_V;								
Explained.								
SQL> select plan_table_output 2 from table(dbms_xplan.display('plan_table',null,'basic'));								
PLAN_TABL	E_OUTPUT							
Plan hash	value: 1571279316							
Id O		Name						
	ELECT STATEMENT	 						
	SORT AGGREGATE	!						
2 3	HASH JOIN PART JOIN FILTER CREATE	:BF0000						
4	HASH JOIN	.65-0000						
j <u> </u>	TABLE ACCESS FULL	DIM_PERIOD						
PLAN_TABL	PLAN_TABLE_OUTPUT							
6	HASH JOIN	 						
7	TABLE ACCESS FULL	DIM_REGION_CCN						
8	HASH JOIN	· PE0001						
10	PART JOIN FILTER CREATE HASH JOIN	:BF0001						
li ii i	PART JOIN FILTER CREATE	:BF0002						
12	HASH JOIN	i						
13	TABLE ACCESS FULL	DIM_VENDOR						
14	PARTITION LIST ALL							
15 16	TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER	VEN_LOC_BASE						
I TO I SAKITITOM FT21 JOTM-LTFIEK								
PLAN_TABLE_OUTPUT								
17	TABLE ACCESS INMEMORY FULL	EDAPIHDR_BASE						
18		!						
19 20	TABLE ACCESS INMEMORY FULL PARTITION LIST JOIN-FILTER	EDAPILIN_BASE						
20	TABLE ACCESS INMEMORY FULL	EDAPIO BASE						
<u></u>								

An Example: Accelerate BI Reports with Oracle 12c

 Compare the Query plans execution time on FACT_EDI_QUEUE_V Not In-Memory

```
SQL> set timing on SQL> set time on 12:35:36 SQL> select count(*) from APD_STAR.FACT_EDI_QUEUE_V;

COUNT(*)
------
51638519

Elapsed: 00:04:02.80
```

In-Memory

```
14:51:55 SQL> select count(*) from APD_STAR.FACT_EDI_QUEUE_V;

COUNT(*)
______
51638519
Elapsed: 00:02:15.11
```

Compare the Dashboard report execution:

Not In-Memory: 9 minutes 31 seconds

In-Memory: 7 minutes 50 seconds

. Next step: Test the performance gains by using the join group in 12cR2

Case Study 2: Use IMDB for Business Analytics Apps

POC Background
 Dell Statistica Analytic Application

Database queries: form dataset by querying 32 columns of 100M rows in a single select statement and computed various stats with these columns:

Example:

S1:	row processed	cost	recursive call	consist ent gets	physical reads	Elapsed: time
in memory	100,000,000	8,781	251	967	0	13:53.20
not in memory	100,000,000	474	240	232704 7	2324568	14:05.7

Not much difference in Elapsed time:

Why: Query Statistics on in memory: huge number of data sent on network

17554520327 bytes sent via SQL*Net to client

73333877 bytes received via SQL*Net from client

666668 SQL*Net roundtrips to/from client

CPU cost comparisons of four major queries:

statement	Cost without In Memory	Cost with In memory
S1	8781	474
S2	8781	474
S 3	8762	357
S4	9084	754

Case Study 2: Use IMDB for Business Analytics Apps

• Example 2: Statistics Aggregation/Computation on large data set Took the dataset (100M rows x 32 columns) and computed various stats for columns in a single select statement with in-memory option on/off (table was configured for parallel execution). The results are as follows:

	No In-r	nemory	In-memory		
Stats computed for 32 columns	Time (s)	Cost	Time (s)	Cost	
Sum	6.313	8781	3.765	474	
Sum Avg	6.328	8781	3.923	474	
Sum Avg Count	6.266	8781	3.696	474	
Sum Avg Count StdDev	19.564	8781	20.565	474	
StdDev	14.314	8781	15.438	474	

Why:

For more complex aggregations like STDDEV, all of the data in the column is scanned, decompressed and sent to SQL execution layer where the STDDEV calculation is conducted. STDDEV calculation takes more time than scanned, decompressed, majority of the spend on STDDEV. The time saving by In memory is not significant compared the elapsed time for STDDEV operation.

How to get most benefits from IMDB

IMDB speeds up data access for Business anaclitic application

- . Not to improve data transfer on Network between BA servers and DB server
- . Not to improve the data processing
- . Data Load such as ETL, staging data
- . Complex PL/SQL, procedures and functions

Good Use Cases:

OLTP; real-time reporting on OLTP data, Reduce extra indexes for reporting And improve the OLTP performance

Thank You and QA

Contact me at kai_yu@dell.com or visit my Oracle Blog at http://kyuoracleblog.wordpress.com/

I am a member of

Archives

December 2016 November 2016 October 2016 September 2016 March 2016 October 2015 May 2015 April 2015 December 2014

Publications 4 comments

Publications

35: QuantCloud: Big Data Infrastructure for Quantitative Finance on the Cloud, IEEE Transactions on Big Data, January, 2017, by Peng Zhang, Kai Yu, Jessica Yu and Samee Khan.

34: Optimize OLAP & Business Analystics Performance with Oracle 12c In-Memory Database Option, IOUG Collaborate 16 Conference whitepaper , April 10,2016

33 Leveraging Oracle ASM Cluster File System for Cloud Storage, IOUG Collaborate 16 conference whitepaper, April 10, 2016.

32 Optimizando Oracle BI Analytics con la opción Oracle 12c: In-Memory Database : Part I, Part II, Oracle Technology Network, August 2015

Proceedings of 17th IEEE High Performance Computing and Communications (HPCC), New York, August 2015.

30. Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option .OAUG Collaborate 15 conference whitepaper , April 13, 2015.

29. Design and Implement your own Self-service private cloud with Oracle EM12c .IOUG Collaborate 15 conference whitepaper , April 14, 2015.

28. Implementing Oracle Database 12c's Heat Map and Automatic Data Optimization to optimize the database storage cost and performance .IOUG Collaborate 15 conference whitepaper , April 15, 2015.

27. High Performance Oracle Workloads with Dell Acceleration Appliances for Database . Dell TechCenter Whitepaper , August 1st, 2014.

26. Ensure HA in Database Cloud with Oracle 12c What to Do and How It to Do and How It to Do . IOUG collaborate 14 conference whitepaper, April 8, 2014