Impact Analysis with
PL/Scope

Steven Feuerstein —
Oracle Developer Advocate for PL/SQL
Oracle Corporation

Email: steven.feuerstein@oracle.com
Twitter: @sfonplsqgl

Blog: stevenfeuersteinonplsql.blogspot.com
YouTube: Practically Perfect PL/SQL

ORACLE

Resources for Oracle Database Developers

Official home of PL/SQL - oracle.com/plsq|l

SQL-PL/SQL discussion forum on OTN
https://community.oracle.com/community/database/developer-tools/sql_and_pl_sql

PL/SQL and EBR blog by Bryn Llewellyn - https://blogs.oracle.com/plsql-and-ebr
Oracle Learning Library - oracle.com/oll

Weekly PL/SQL and SQL quizzes, and more - plsglchallenge.oracle.com

Ask Tom - asktom.oracle.com — 'nuff said

LiveSQL - livesgl.oracle.com — script repository and 12/7 12c database
oracle-developer.net - great content from Adrian Billington

oracle-base.com - great content from Tim Hall

ORACLE

Page 2

PL/Scope

Added in 11.1, compiler-driven tool that collects information about
identifiers and statements, and stores it in data dictionary views.
Use PL/Scope to answer questions like:

Where is a variable assigned a value in a program?

What variables are declared inside a given program?

Which programs call another program (that is, you can get down to a subprogram
in a package)?

Find the type of a variable from its declaration.

And with 12.2, you can now also analyze SQL statements in PL/SQL.

ORACLE

Page 3

Life Without PL/Scope

Prior to PL/Scope, analyzing impact mostly meant text searches through
files, or queries against ALL_ SOURCE and ALL_DEPENDENCIES views.

ALL_DEPENDENCIES is fine for giving you dependency info at the database
object level, but not below.

"Find all the packages that reference table X".

With 11.1, Oracle now supports fine-grained dependencies for invalidation,
but that information is not available via data dictionary views.

SELECT owner
, hame
» type
referenced_owner || *." ||
FROM aII _dependencies
AND referenced_type IN ("TABLE®", "VIEW")
AND referenced_name = "MY_TABLE*
ORDER BY name, referenced owner, referenced_name

11g fgd*.sql

ORACLE

Page 4

Getting Started with PL/Scope

ALTER SESSION SET plscope_settings="IDENTIFIERS:ALL"

PL/Scope must be enabled; it is off by default.

When your program is compiled, information about all identifiers are
written to the ALL_IDENTIFIERS view.

You then query the contents of the view to get information about your
code.

Check the ALL_PLSQL OBIJECT SETTINGS view for the PL/Scope setting of
a particular program unit.

ORACLE

Page 5

Key Columns in ALL_IDENTIFIERS

TYPE
The type of identifier (VARIABLE, CONSTANT, etc.)

USAGE
The way the identifier is used (DECLARATION, ASSIGNMENT, etc.)

LINE and COL

Line and column within line in which the identifier is found

SIGNATURE

Unique value for an identifier. Especially helpful when distinguishing between
overloadings of a subprogram or "connecting" subprogram declarations in package
with definition in package body.

USAGE_ID and USAGE_CONTEXT_ID
Reveal hierarchy of identifiers in a program unit

ORACLE

Page 6

Start with some simple examples

Show all the identifiers in a program unit
Show all variables declared in a subprogram (not at package level)
Show all variables declared in the package specifications

Show the locations where a variable could be modified

plscope_demo_setup.sql
plscope_all_idents.sql
plscope_var_declares.sql
plscope _gvar_declares.sql
plscope_var_changes.sql

ORACLE

Page 7

More advanced examples

Find exceptions that are defined but never raised
Show the hierarchy of identifiers in a program unit

Validate naming conventions with PL/Scope

plscope_unused_exceptions.sql
plscope_hierarchy.sql

plscope_naming_conventions.sql
y

ORACLE

Page 8

PL/Scope Helper Utilities

Clearly, "data mining" in ALL_IDENTIFIERS can get complicated.

Suggestions for putting PL/Scope to use:
Build views to hide some of the complexity.
Build packages to provide high-level subprograms to perform specific actions.

plscope_helper_setup.sql
plscope_helper.pkg

ORACLE

Page 9

12.2 Enhancements to PL/Scope

ALTER SESSION SET plscope_settings="IDENTIFIERS:ALL, STATEMENTS:ALL"

Gathers data on SQL statements in PL/SQL program units
You can now find:

where specific columns are referenced

all program units performing specific DML operations on table (and help you
consolidate such statements)

all SQL statements containing hints

all dynamic SQL usages — ideal for getting rid of SQL injection vulnerabilities
locations in your code where you commit or rollback

multiple appearances of same SQL statement (same SQL_ID)

ORACLE

Page 10

New ALL_STATEMENTS View

The ALL_STATEMENTS view (along with USER_STATEMENTS) contains
information about each SQL statement in program units compiled with
PL/Scope enabled.

full_text — text of SQL statement

has_into_record — INTO plsql_record

has_current_of — Uses CURRENT OF syntax

has_for_update — Uses FOR UPDATE syntax

has_in_binds -

has_into_bulk — Uses BULK COLLECT INTO

usage_id —Same as with ALL_IDENTIFIERS — and unique across both tables!
sql_id — pointer to SQL statement in vS views

ORACLE

Page 11

Some Examples

Find SQL Statements with Hints

SELECT owner,
object name,
line,
Tfull_text
FROM all_statements
WHERE has_hint = "YES*

There's so much you can
do!

ORACLE

Find All DML Statements On Table

SELECT idt.line,
idt.owner || "." || idt.object name
code_unit,
RTRIM (src.text, CHR (10)) text
FROM all_identifiers idt
, all_statements st
, all_source src
WHERE idt.usage = "REFERENCE*
AND idt.TYPE = "TABLE"
AND idt.name = table_in
AND idt.owner = owner_in
AND idt.line = src.line
AND idt.object_name = src.name
AND Idt.owner = src.owner
AND i1dt.usage_context _id = st.usage_id

Page 12

More Examples!

Same SQL Statement Used > 1?

SELECT sql_id, text, COUNT (*)
FROM all_statements same SQI.'—ID ou
WHERE sql_id IS NOT NULL different signature.
GROUP BY sqgl_id, text
HAVING COUNT (*) > 1
/

Uses BULK COLLECT INTO?

SELECT *
FROM all_statements
WHERE has_into_bulk = "YES*
/

ORACLE

Copyright © 2017 Oracle and/or its affiliates. All rights reserved. | Page 13

More Examples: Find dynamic SQL

SELECT st.owner, st.object_name, st.line, s.text Native Dynamic SQL —
FROM all_statements st, all_source s
WHERE st.TYPE IN ("EXECUTE IMMEDIATE", “"OPEN™)
AND st.owner = s.owner
AND st.object_name = s.name
AND st.line = s.line
UNION ALL

easy!

SELECT idnt.owner, idnt.object _name, idnt.line, src.text
FROM all_identifiers idnt, all_source src
WHERE idnt.owner <> "SYS*
AND i1dnt.signature IN (SELECT a.signature
FROM all_identifiers a
WHERE a.usage = "DECLARATION*
AND a.owner = "SYS*
AND a.object_name = "DBMS_SQL*
AND a.object_type = "PACKAGE®)
AND idnt.owner = src.owner
AND idnt.name = src.name

AND idnt.line = src.line DBMS_SQL References:

must recompile built-in
with PL/Scope enabled!

ORACLE

Page 14

Conclusions

PL/Scope gives you a level of visibility into your code that was never
before possible.

With 12.2 enhancements adding analysis of SQL, you can now perform
detailed analysis of the impact of changing your data structures.

Check out my (and other) LiveSQL scripts demonstrating PL/Scope
capabilities.

livesqgl.oracle.com

Doc: 12.2 Database Development Guide

ORACLE

Page 15

ORACLE

	Impact Analysis with �PL/Scope
	Resources for Oracle Database Developers
	PL/Scope
	Life Without PL/Scope
	Getting Started with PL/Scope
	Key Columns in ALL_IDENTIFIERS
	Start with some simple examples
	More advanced examples
	PL/Scope Helper Utilities
	12.2 Enhancements to PL/Scope
	New ALL_STATEMENTS View
	Some Examples
	More Examples!
	More Examples: Find dynamic SQL
	Conclusions
	Slide Number 16

