
Cathye Pendley – Business Intelligence Program Manager, Rosendin

Gerald Venzl – Senior Director of Product Management, Oracle

1

New Features in Oracle Database 23C

Helpful Links –

ORACLE ANALYTICS VIDEOS:

https://www.youtube.com/@OracleAnalytics/videos

OAC MAY 2023 NEW FEATURES VIDEOS BY ORACLE:

https://www.youtube.com/watch?v=cgnJeVu-plE&list=PL6gBNP-Fr8KWZkXpZnjr7lTMfDTj9-dfK&pp=iAQB

ORACLE ANALYTICS COMMUNITY:

https://community.oracle.com/products/oracleanalytics

ORACLE ANALYTICS LIVE DEMOS:

https://www.oracle.com/business-analytics/data-visualization/demos/

2

https://www.youtube.com/@OracleAnalytics/videos
https://www.youtube.com/watch?v=cgnJeVu-plE&list=PL6gBNP-Fr8KWZkXpZnjr7lTMfDTj9-dfK&pp=iAQB
https://community.oracle.com/products/oracleanalytics
https://www.oracle.com/business-analytics/data-visualization/demos/

Future & Past
TechCasts:

www.andouc.org

Submit a topic to share at https://andouc.org/techcasts/

Click to see Live TechCast page

https://andouc.org/techcasts/#TechCast-Series

We Have Merch!
Show your “Tech Side” in everything you do!

Visit the AnDOUC Store at ANDOUC.ORG

Let’s Connect

Website
http://andouc.org/

Chat with the Experts

https://bit.ly/Join-ANDOUC-Slack

Watch Previous TechCasts
https://bit.ly/3qmGgHN

@AnalyticAndData https://www.facebook.com/
AnDOracleUserCommunity

https://www.linkedin.com/c
ompany/analytics-and-data-

oracle-user-community

Spatial + Graph SIG
bit.ly/Spatial-Graph-LinkedIn

http://andouc.org/
https://bit.ly/ANDOUC-Slack
https://www.youtube.com/channel/UC_gVAz6TSmWnUifnu-y-wBA/featured
https://bit.ly/Join-ANDOUC-Slack
https://bit.ly/3qmGgHN
https://www.facebook.com/AnDOracleUserCommunity
https://www.facebook.com/AnDOracleUserCommunity
https://www.linkedin.com/company/analytics-and-data-oracle-user-community
https://www.linkedin.com/company/analytics-and-data-oracle-user-community
https://www.linkedin.com/company/analytics-and-data-oracle-user-community
https://bit.ly/Spatial-Graph-LinkedIn

Save the Date!

Analytics and Data
Summit 2024

April 9-11, 2024
Oracle Conference Center

Redwood Shores, California

www.andouc.org/andsummit2024

http://www.andouc.org/andsummit2024

Agenda

Copyright © 2022, Oracle and/or its affiliates7

NEW IN

23c

• Oracle Database 23c New Features

• Marque

• Analytic

• Nice to Know

• Time Saver

• Oracle database 23c – Free for developers

Marque Features

Copyright © 2022, Oracle and/or its affiliates8

NEW IN

23c

• JSON Relational Duality

• JSON Schema

• Domains

• Operational Property Graphs

• SQL/PGQ

JSON Relational Duality Views new in Oracle Database 23c
enable databases to generate JSON format and APIs from
relational tables

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

S C H E D U L E F O R : J I L L

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 …
]
}

S T U D E N T S C H E D U L E F O R : J I L L

The structure of the Duality view mirrors the structure of
the desired JSON, making it easy to define

Uses familiar
GraphQL syntax

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

The view simply specifies the tables that contain the
data to include in the JSON document

T E A C H E R

C O U R S E

S T U D E N T

S T U D E N T
C O U R S E S

CREATE JSON DUALITY VIEW student_schedule
AS student
{{
 student : stuid
 name : sname
 major : major
 schedule : student_courses
 [{
 course
 {
 time : time
 course : cname
 courseId : cid
 room : room
 teacher @unnest
 {
 teacher : tname
 }
 }
 }]
};

And specifies the table columns that hold the values

S T U D E N T

STUID SNAME MAJOR YEAR

S3245 Jill Math First

… … … …

… … … …

… … … …

Apps use standard REST APIs to GET a document from the View

Views can also be accessed by any app using
the MongoDB compatible API and SQL

JSON Duality Views are simple to query using document APIs

GET school.edu/student_sched?q={"student":{"$eq":"Jill"}}

REST API

MongoDB API

SQL

DatabaseApp

App

JSON Duality Views are also simple to update

PUT school.edu/student_schedule/:stuid
Change Doc

REST API

MongoDB API

SQL

Database

Apps edit the document they previously got

Then PUT the document back into the View

• Or write it with the MongoDB API or SQL

As part of the update, the database
detects the changes made to the document and
only modifies the underlying table rows
that have changed

{
 "student" : "S4356",
 "name" : "Lucas",
 "major" : "Engineering",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "18:00",
 "course" : "Physics",
 "room" : "A115",
 "teacher" : "Alex"
 }
]
}

{
 "student" : "S3245",
 "name" : "Jill",
 "major" : "Math",
 "schedule" :
 [{
 "time" : "14:00",
 "course" : "Math 201",
 "room" : "A102",
 "teacher" : "Adam"
 },
 {
 "time" : "16:00",
 "course" : "Science 102",
 "room" : "B405",
 "teacher" : "Anita"
 }
]
}

S T U D E N T S C H E D U L E F O R : J I L L S T U D E N T S C H E D U L E F O R : L U C A S

Seems
duplicate

d
but is not

Duality views never duplicate data
because the data is stored as
normalized rows

Huge benefit for other apps
using the same data!

Duality allows JSON documents
to include any data that is convenient for the app

Because any data can be included in documents,
Duality provides better JSON to Apps than JSON Databases

Time 4:00 PM
Room B405
Teacher Anita

Time 2:00 PM
Room A102
Teacher Adam

Math 201 Science 102

JSON Duality views allow the same underlying data
to be customized to match the needs of each app use case

Time 2:00 PM Room A312 Students 60
Time 4:00 PM Room B405 Students 90
Time 6:00 PM Room A151 Students 20

Science 102

Course Science 101 Teachers Adam, Alex
Course Science 102 Teachers Anita, Anna
Course Science 201 Teachers Anita, Adam

TEACHER SCHEDULE FOR ANITA
SCIENCE DEPT

COURSE CURRICULUM
FOR SCIENCE

STUDENT SCHEDULE FOR JILL
MATH MAJOR

Huge benefits for App Dev!

Never
duplicates Data

Always consistent

• Validation on storage

• Validation on query

• Validation reports

JSON Schema

Copyright © 2022, Oracle and/or its affiliates17

Validate JSON documents

CREATE TABLE jdocs (
 doc JSON VALIDATE
 '{
 "type": "object",
 "properties": {
 "id":
 {"type": "number"}
 }
 }'
);

SELECT * FROM staging
 WHERE doc IS JSON
VALIDATE
 '{
 "type": "object",
 "properties": {
 "id":
 {"type": "number"}
 }
 }';

SELECT
 DBMS_JSON_SCHEMA
 .VALIDATE_REPORT(doc, schema)
FROM jdocs;

REPORT

{
 "valid" : false,
 "errors" :
 [
 {
 "schemaPath" : "$.id",
 "instancePath" : "$",
 "code" : "JZN-00503",
 "error" : "invalid type
found, actual: string,
expected: number"
 }
]
}

NEW IN

23c

Domains

Copyright © 2022, Oracle and/or its affiliates18

Abstract domain specific knowledge into reusable objects

CREATE DOMAIN DomainName AS <Data Type>
[DEFAULT <expression> [ON NULL]] [NOT NULL]
[CONSTRAINT [name] CHECK (<expression>) [ENABLE | DISABLE]]
[COLLATE collation]
[DISPLAY <expression>]
[ORDER <expression>]
[ANNOTATIONS (annotations)]

CREATE DOMAIN email AS VARCHAR2(255) NOT NULL
CONSTRAINT email_c CHECK
 (REGEXP_LIKE (email, '^(\S+)\@(\S+)\.(\S+)$'))
DISPLAY '---' || SUBSTR(email, INSTR(email, '@'))
ORDER SUBSTR(email, INSTR(email, '@')+1) ||
 SUBSTR(email, 1, INSTR(email, '@'));

NEW IN

23c

Domains

Copyright © 2022, Oracle and/or its affiliates19

Abstract domain specific knowledge into reusable objects

CREATE TABLE customers (
 cust_id NUMBER NOT NULL PRIMARY KEY,
 name VARCHAR2(4000) NOT NULL,
 contact_email VARCHAR2(1000) DOMAIN email,
 invoice_email email
);

INSERT INTO customers values (1, 'TEST', 'abc', 'abc');

ORA-02290: check constraint (EMAIL_C) violated

NEW IN

23c

Domains

Copyright © 2022, Oracle and/or its affiliates20

Abstract domain specific knowledge into reusable objects

• New functions DOMAIN_DISPLAY() and DOMAIN_ORDER() to retrieve display and order

SELECT DOMAIN_DISPLAY(invoice_email)
 AS email
 FROM customers;

EMAIL

---@aldi.com
---@swarovski.com
---@shell.com

SELECT name FROM customers
ORDER BY DOMAIN_ORDER(contact_email);

NAME

Aldi
Shell
Swarovski

NEW IN

23c

Oracle is Constantly Innovating

In Oracle Database 23c

JSON duality views, Graph, AI, vector search,
and much, much more

A must-watch: Juan Loaiza’s keynote

"With Oracle Database 23c one part of an app
can treat data as relational, while other parts
treat the same data as a document, and others
treat it as a graph."

On YouTube

Operational Property Graphs

Your data is connected

Leverage additional insights in your data by
analyzing connections

Comparing SQL with and without SQL/PGQ

Copyright © 2022, Oracle and/or its affiliates23

12 joins and 2 UNION ALLs

-- transfers indirectly from <src> to <dst>

SELECT account_id
 FROM GRAPH_TABLE(bank_graph
 MATCH (src)-[is bank_transfers]->{1,3}(dst)
 COLUMNS (src.id as account_id));

-- transfers indirectly from <src> to <dst>

SELECT v1.id as account_id1 , v2.id as account_id2
FROM bank_accounts v1 ,
 bank_transfers btx,
 bank_accounts v2
WHERE (v1.id = btx.src_acct_id AND v2.id = btx.dst_acct_id)
AND v1.id= <src> AND v2.id= <dst>
UNION ALL
SELECT v1.id as account_id1 , v2.id as account_id2
FROM bank_accounts v1 ,
 bank_transfers btx,
 bank_accounts bc2,
 bank_transfers btx2 ,
 bank_accounts v2
WHERE (v1.id = btx.src_acct_id AND bc2.id = btx.dst_acct_id AND
 bc2.id = btx2.src_acct_id AND v2.id = btx2.dst_acct_id)
AND v1.id= <src> AND v2.id= <dst>
UNION ALL
SELECT v1.id as account_id1 ,v2.id as account_id2
FROM bank_accounts v1 ,
 bank_transfers btx,
 bank_accounts bc2,
 bank_transfers btx2 ,
 bank_accounts bac4,
 bank_transfers btx5 ,
 bank_accounts v2
WHERE (v1.id = btx.src_acct_id AND bc2.id = btx.dst_acct_id AND
 bc2.id = btx2.src_acct_id AND bac4.id = btx2.dst_acct_id AND
 bac4.id = btx5.src_acct_id AND v2.id = btx5.dst_acct_id)
AND v1.id= <src> AND v2.id= <dst>
;

NEW IN

23c

Analytics Functions

Copyright © 2022, Oracle and/or its affiliates24

NEW IN

23c

• Aggregation over Interval Data Types

• String Matching Functions

Aggregation over Interval Data Types

Copyright © 2022, Oracle and/or its affiliates25

select id,
 start_time,
 end_time,
 duration,
 avg(duration) over () as avg_duration
from t1;

 ID START_TIME END_TIME DURATION AVG_DURATION
---------- -------------------- -------------------- -------------------- ------------------------------
 1 2023-04-10 08:45:00 2023-04-10 18:01:00 +00 09:16:00.000000 +000000000 09:00:15.000000000
 2 2023-04-11 09:00:00 2023-04-11 17:00:00 +00 08:00:00.000000 +000000000 09:00:15.000000000
 3 2023-04-12 08:00:00 2023-04-12 17:45:00 +00 09:45:00.000000 +000000000 09:00:15.000000000
 4 2023-04-13 07:00:00 2023-04-13 16:00:00 +00 09:00:00.000000 +000000000 09:00:15.000000000

NEW IN

23c

create table t1 (
 id number,
 start_time timestamp,
 end_time timestamp,
 duration interval day to second generated always as (end_time - start_time) virtual
);

String Matching SQL Functions

Copyright © 2022, Oracle and/or its affiliates26

1. PHONIC_ENCODE

• Converts words or phrases into codes based on their pronunciation.

• Algorithms:

• Double Metaphone (DM)

• Double Metaphone Alternative: uses alternative codes to accommodate some ambiguous cases

2. FUZZY_MATCH

• Gives a gauge of how textually similar two strings are.

• Algorithms:

• Levenshtein: corresponds to UTL_MATCH.EDIT_SIMILARITY/EDIT_DISTANCE

• JARO_WINKLER: corresponds to UTL_MATCH.JARO_WINKLER/JARO_WINKLER_SIMILARITY

• BIGRAM

• TRIGRAM

• WHOLE_WORD_MATCH

• LONGEST_COMMON_SUBSTRING

NEW IN

23c

String Matching SQL Functions – PHONIC_ENCODE

Copyright © 2022, Oracle and/or its affiliates27

NEW IN

23c

SELECT TEXT_VALUES,
phonic_encode(DOUBLE_METAPHONE, TEXT_VALUES, 12) AS DM12,
phonic_encode(DOUBLE_METAPHONE_ALT, TEXT_VALUES, 12) AS DMA12,
phonic_encode(DOUBLE_METAPHONE, TEXT_VALUES, 3) AS DM3,
phonic_encode(DOUBLE_METAPHONE_ALT, TEXT_VALUES, 3) AS DMA3
FROM PHONIC_TEST ;

String Matching SQL Functions FUZZY_MATCH

Copyright © 2022, Oracle and/or its affiliates28

1. LEVENSHTEIN corresponds to UTL_MATCH.EDIT_DISTANCE or UTL_MATCH.EDIT_SIMILARITY and gives a
measure of character edit distance or similarity.

2. JARO_WINKLER corresponds to UTL_MATCH.JARO_WINKLER (a percentage between 0-1) or
UTL_MATCH.JARO_WINKLER_SIMILARITY (the same but scaled from 0-100).

3. BIGRAM and TRIGRAM are instances of the N-gram matching technique, which counts the number of
common contiguous sub-strings (grams) between the two strings.

4. WHOLE_WORD_MATCH corresponds to Word Match Percentage or Count comparison in Oracle Enterprise
Data Quality. It calculates the LEVENSHTEIN or edit distance of two phrases with words (instead of letters)
as matching units.

5. LONGEST_COMMON_SUBSTRING finds the longest common substring between the two strings.

NEW IN

23c

String Matching SQL Functions FUZZY_MATCH

Copyright © 2022, Oracle and/or its affiliates29

NEW IN

23c

SELECT
 text1, text2,
 fuzzy_match(LEVENSHTEIN, text1, text2) AS LEV,
 fuzzy_match(LEVENSHTEIN, text1, text2, UNSCALED) AS ULEV,
 fuzzy_match(JARO_WINKLER, text1, text2) AS JW,
 fuzzy_match(BIGRAM, text1, text2) AS BIG,
 fuzzy_match(BIGRAM, text1, text2) AS UBIG,
 fuzzy_match(TRIGRAM, text1, text2) AS TRIG,
 fuzzy_match(LONGEST_COMMON_SUBSTRING, text1, text2) AS LCS
FROM (
 VALUES ('kitten', 'sitten'),
 ('Apco Oil Lube 170’, 'Apco Oil Lube 347'),
 ('Apco Oii 2 l Lube 170', 'Apco Oil Lube 347')
) t (text1, text2);

TEXT1 TEXT2 LEV ULEV JW BIG UBIG TRIG LCS
------------------ ----------------- --- ---- -- --- ---- ---- ---
kitten sitten 84 1 88 80 80 75 83
Apco Oil Lube 170 Apco Oil Lube 347 83 3 95 81 81 80 82
Apco Oiil Lube 170 Apco Oil Lube 347 78 4 94 76 76 68 44

Nice to Know

Copyright © 2022, Oracle and/or its affiliates30

NEW IN

23c

• Schema Level Privileges

• Table Value Constructor

• Annotations

• Boolean Data Type

• Select without From

• 4096 Columns

• Developer Role

• Better Return Clause

• Prior had to grant access for ANY object in the entire DB or for every object explicitly

• Now can grant access to ANY object in the entire schema instead

SCHEMA level privileges

Copyright © 2022, Oracle and/or its affiliates31

Ability to grant privileges for objects in an entire schema

GRANT SELECT ANY TABLE
 TO HR;

GRANT SELECT ON
 PROD.CUSTOMERS,
 PROD.SALES,
 PROD.ADDRESSES,
 PROD.STOCK,
 PROD.PAYMENTS
 …
 TO HR;

GRANT SELECT ANY TABLE
 ON SCHEMA PROD
 TO HR;

NEW IN

23c

Table Value Constructor (ISO SQL Standard)

Copyright © 2022, Oracle and/or its affiliates32

• Generate multiple rows at once

INSERT INTO bookings
 VALUES (12113, 'Vienna', '2022-09-21'),
 (62361, 'San Francisco', '2022-10-12'),
 (38172, 'Berlin', '2022-12-15');

SELECT *
FROM (VALUES (1,'Scott'),
 (2,'James'),
 (3,'John')
) t1 (employee_id, first_name);

EMPLOYEE_ID FIRST
----------- -----
 1 Scott
 2 James
 3 John

NEW IN

23c

Table Value Constructor (ISO SQL Standard)

Copyright © 2022, Oracle and/or its affiliates33

• Generate multiple rows at once

WITH X (c1, c2, c3) AS (
VALUES (0, 1, 2),
 (3, 4, 5),
 (6, 7, 8)
) SELECT * FROM X;

 C1 C2 C3
--------- ---------- ----------
 0 1 2
 3 4 5
 6 7 8

Execution Plan

Plan hash value: 2575724336

| Id | Operation | Name |

0	SELECT STATEMENT
1	VIEW
2	VALUES SCAN

Table Value Constructor
--

 2 - #tuples:3, #elems:3
 values:(0, 1, 2), (3, 4, 5), (6, 7, 8)

NEW IN

23c

Annotations

Copyright © 2022, Oracle and/or its affiliates34

• Provide metadata for your data and data model

• Supported: tables, views, table/view columns, materialized views, indexes, domains and more

annotations
 ::= 'ANNOTATIONS' (annotations_list)

annotations_list
 ::= { 'ADD' | 'DROP' } annotation (',' { 'ADD' | 'DROP' } annotation)

annotation
 ::= annotation_name annotation_value

NEW IN

23c

Annotations

Copyright © 2022, Oracle and/or its affiliates35

• Define annotations as free-text keys or key/value pairs

• Add annotations to an object

CREATE TABLE customers (...)
 ANNOTATIONS (Sensitivity 'High',
 Departments 'Sales, Delivery',
 FrontOffice);

NEW IN

23c

Annotations

Copyright © 2022, Oracle and/or its affiliates36

• Define annotations as free-text keys or key/value pairs

• Add annotations to an attribute like a table column

CREATE TABLE employee (
 id NUMBER(5)
 ANNOTATIONS (Identity, Display 'Employee ID', Group 'Emp_Info'),
 name VARCHAR2(50)
 ANNOTATIONS (Display 'Employee Name', Group 'Emp_Info'),
 salary NUMBER
 ANNOTATIONS (Display 'Employee Salary', UI_Hidden)
)
ANNOTATIONS (Display 'Employee Table');

NEW IN

23c

BOOLEAN data type (ISO SQL Standard)

Copyright © 2022, Oracle and/or its affiliates37

CREATE TABLE emails (address VARCHAR2(1000), active BOOLEAN);

INSERT INTO emails VALUES ('joe.doe@gmail.com', TRUE);
INSERT INTO emails VALUES ('jame.doe@yahoo.com', FALSE);
INSERT INTO emails VALUES ('mary.smith@yahoo.com', 'YES');
INSERT INTO emails VALUES ('jim.watson@bt.co.uk', 0);

SELECT address FROM emails WHERE active;

ADDRESS

joe.doe@gmail.com
mary.smith@yahoo.com

NEW IN

23c

SELECT without FROM

Copyright © 2022, Oracle and/or its affiliates38

• SELECT on expressions no longer require FROM dual

• DUAL table remains and can still be used

SELECT SYSDATE;

SYSDATE

2022-09-21 22:18:52

SELECT 2*3 AS result;

RESULT

 6

SELECT my_func();

MY_FUNC

Hello World!

NEW IN

23c

• 23c can support up to 4096 columns per table

• COMPATIBILITY needs to be set to 23.0.0

4096 columns

Copyright © 2022, Oracle and/or its affiliates39

ALTER SYSTEM SET MAX_COLUMNS=EXTENDED;

NEW IN

23c

Developer role

Copyright © 2022, Oracle and/or its affiliates40

• Grant/revoke developer privileges with just one command:

GRANT DB_DEVELOPER_ROLE TO dev_user;
REVOKE DB_DEVELOPER_ROLE FROM dev_user;

NEW IN

23c

• Includes:

• System privileges required to build a data model

• Object privileges required to monitor and debug applications

Developer role

Copyright © 2022, Oracle and/or its affiliates41

• System privileges

• ADMINISTER SQL TUNING SET

• CREATE ANALYTIC VIEW

• CREATE ATTRIBUTE DIMENSION

• CREATE CUBE

• CREATE CUBE BUILD PROCESS

• CREATE CUBE DIMENSION

• CREATE DIMENSION

• CREATE DOMAIN

• CREATE HIERARCHY

• CREATE JOB

• CREATE MATERIALIZED VIEW

• CREATE MINING MODEL

• CREATE MLE

• CREATE PROCEDURE

• CREATE SEQUENCE

• CREATE SESSION

• CREATE SYNONYM

• CREATE TABLE

• CREATE TRIGGER

• CREATE TYPE

• CREATE VIEW

• DEBUG CONNECT SESSION

• EXECUTE DYNAMIC MLE

• EXECUTE ON JAVASCRIPT

• FORCE TRANSACTION

• ON COMMIT REFRESH

NEW IN

23c

Developer role

Copyright © 2022, Oracle and/or its affiliates42

• Object privileges:

• GRANT SELECT ON SYS.DBA_PENDING_TRANSACTIONS

• GRANT SELECT ON V$SESSION, V$SESSTAT, V$STATNAME

• Included Roles:

• RESOURCE

• SODA_APP

• CTXAPP

NEW IN

23c

Better RETURNING clause

Copyright © 2022, Oracle and/or its affiliates43

• Return values for all DML statements (INSERT/UPDATE/DELETE/MERGE)

• Return OLD and NEW values

UPDATE employees SET salary=salary*2
 WHERE country = 'Austria'
RETURNING OLD salary, NEW salary
 INTO :old_salary, :new_salary;

RETURNING CLAUSE ::=
 { RETURN | RETURNING } { OLD | NEW } expr
 [, { OLD | NEW } expr] ...
 INTO variable [, variable] ...

returning clause ::= { RETURN | RETURNING } { OLD | NEW } expr [, {OLD | NEW } expr]... INTO data_item [, data_item]...

MERGE INTO sales s USING
 (SELECT account, sale FROM ext) e
 ON (e.account=s.account)
 WHEN MATCHED THEN
 UPDATE SET s.sale=e.sale
 WHEN NOT MATCHED THEN
 INSERT (s.account, s.sale)
 VALUES (e.account, e.sale)
RETURNING s.account, e.sale
 INTO :n1, :n2;

NEW IN

23c

Time Savers

Copyright © 2022, Oracle and/or its affiliates44

NEW IN

23c

• Group By Column Alias / Position

• Direct Joins for UPDATE and DELETE

• IF [NOT] EXISTS

• Seamless Concatenations

• DEFAULT ON NULL for UPDATE or Insert Statements

GROUP BY column alias / position

Copyright © 2022, Oracle and/or its affiliates45

• No longer need to repeat lengthy expressions in the GROUP BY clause

SELECT extract(year FROM hiredate) AS hired_year, COUNT(*)
FROM emp
GROUP BY extract(year FROM hiredate)
HAVING extract(year FROM hiredate) > 1985;

SELECT extract(year FROM hiredate) AS hired_year, COUNT(*)
FROM emp
GROUP BY hired_year
HAVING hired_year > 1985;

NEW IN

23c

Direct Joins for UPDATE and DELETE (ISO SQL Standard)

Copyright © 2022, Oracle and/or its affiliates46

• Update a table via a condition from a join

UPDATE employees e SET e.salaries = e.salaries * 2
 FROM departments d
 WHERE e.dept_id = d.dept_id
 AND d.name = 'Development';

NEW IN

23c

DELETE FROM employees e
 FROM departments d
 WHERE e.dept_id = d.dept_id
 AND d.name = 'Sales'
 AND e.hire_date < TO_DATE('01-JAN-16','DD-MON-YY');

IF [NOT] EXISTS

Copyright © 2022, Oracle and/or its affiliates47

• Control DDL error condition

CREATE TABLE test123 (id NUMBER);

ORA-00955: name is already used by
an existing object

CREATE TABLE IF NOT EXISTS
 test123(id NUMBER);

Table created.

DROP TABLE test123;

ORA-00942: table or view does not
exist

DROP TABLE IF EXISTS test123;

Table dropped.

NEW IN

23c

Seamless Concatenations

Copyright © 2022, Oracle and/or its affiliates48

• Before 23c

SELECT CONCAT(CONCAT(CONCAT('Hello', ' '), 'World'), '!') AS string;

STRING

Hello World!

NEW IN

23c

SELECT CONCAT('Hello', ' ', 'World', '!') AS string;

STRING

Hello World!

• With 23c

DEFAULT ON NULL for UPDATE or Insert Statements

Copyright © 2022, Oracle and/or its affiliates49

drop table if exists t1 purge;

create table t1 (
 id number,
 description varchar2(15) default on null for insert and update 'banana'
);

NEW IN

23c

insert into t1 (id, description) values (1, null);
insert into t1 (id) values (2);

select * from t1;

 ID DESCRIPTION
---------- ---------------
 1 banana
 2 banana

Oracle released Oracle 23c Free

Copyright © 2022, Oracle and/or its affiliates50

Overview

Developers can download and start using the Oracle 23c Free release to get a head start on new features of the
Oracle database. Oracle provides a VirtualBox download that includes:

• Oracle Linux 8.7

• Oracle Database 23.2 Free - Developer Release for Linux x86-64

• Sample Schema and Tables

• Oracle REST Data Services 23.1

• Oracle SQLcl 23.1

• Oracle APEX 22.2

Limitations

• 12 GB of User Data storage

• Maximum RAM is 2 GB

Steps

• Download Image - https://www.oracle.com/database/free/download/

• Install Virtual Box - https://www.virtualbox.org/

• Follow the instructions and you should be ready to go in less than an hour.

NEW IN

23c

Copyright © 2023, Oracle and/or its affiliates

Free Resources for Developers

11/2/2023

oracle.github.io/free Free Oracle Software

oracle-sql-features.github.io Oracle Database Feature Documentation

asktom.oracle.com Oracle Database Q&A Forum

livesql.oracle.com Oracle SQL scratchpad

devgym.oracle.com Learn SQL & PL/SQL

	Default Section
	Slide 1: New Features in Oracle Database 23C
	Slide 2: Helpful Links –
	Slide 3: Future & Past TechCasts:
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Agenda
	Slide 8: Marque Features
	Slide 9: JSON Relational Duality Views new in Oracle Database 23c enable databases to generate JSON format and APIs from relational tables
	Slide 10: The structure of the Duality view mirrors the structure of the desired JSON, making it easy to define
	Slide 11: The view simply specifies the tables that contain the data to include in the JSON document
	Slide 12: And specifies the table columns that hold the values
	Slide 13: JSON Duality Views are simple to query using document APIs
	Slide 14: JSON Duality Views are also simple to update
	Slide 15: Duality allows JSON documents to include any data that is convenient for the app
	Slide 16: JSON Duality views allow the same underlying data to be customized to match the needs of each app use case
	Slide 17: JSON Schema
	Slide 18: Domains
	Slide 19: Domains
	Slide 20: Domains
	Slide 21: Oracle is Constantly Innovating
	Slide 22: Operational Property Graphs
	Slide 23: Comparing SQL with and without SQL/PGQ
	Slide 24: Analytics Functions
	Slide 25: Aggregation over Interval Data Types
	Slide 26: String Matching SQL Functions
	Slide 27: String Matching SQL Functions – PHONIC_ENCODE
	Slide 28: String Matching SQL Functions FUZZY_MATCH
	Slide 29: String Matching SQL Functions FUZZY_MATCH
	Slide 30: Nice to Know
	Slide 31: SCHEMA level privileges
	Slide 32: Table Value Constructor (ISO SQL Standard)
	Slide 33: Table Value Constructor (ISO SQL Standard)
	Slide 34: Annotations
	Slide 35: Annotations
	Slide 36: Annotations
	Slide 37: BOOLEAN data type (ISO SQL Standard)
	Slide 38: SELECT without FROM
	Slide 39: 4096 columns
	Slide 40: Developer role
	Slide 41: Developer role
	Slide 42: Developer role
	Slide 43: Better RETURNING clause
	Slide 44: Time Savers
	Slide 45: GROUP BY column alias / position
	Slide 46: Direct Joins for UPDATE and DELETE (ISO SQL Standard)
	Slide 47: IF [NOT] EXISTS
	Slide 48: Seamless Concatenations
	Slide 49: DEFAULT ON NULL for UPDATE or Insert Statements
	Slide 50: Oracle released Oracle 23c Free
	Slide 51: Free Resources for Developers
	Slide 52

