

Data Exploration Made Easy With Oracle-ADS!

Phil Godfrey – Principal Data Analytics & Al Consultant, Vertice

Helpful Links –

KAGGLE – TITANIC DATASET: https://www.kaggle.com/competitions/titanic/data

ORACLE ADS –DOCUMENTATION: https://accelerated-data-science.readthedocs.io/en/latest/index.html

ORACLE LIVE LAB – GETTING STARTED WITH OCI DATA SCIENCE: https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/viewworkshop?wid=673&clear=RR,180&session=17058798830297

ORACLE CLOUD FREE TIER: https://www.oracle.com/cloud/free/

Submit a topic to share at https://andouc.org/techcasts/

We Have Merch!

Show your "Tech Side" in everything you do! Visit the AnDOUC Store at ANDOUC.ORG

Let's Connect

Website http://andouc.org/

Chat with the Experts https://bit.ly/Join-ANDOUC-Slack

Watch Previous TechCasts https://bit.ly/3qmGgHN

@AnalyticAndData

https://www.facebook.com/ AnDOracleUserCommunity https://www.linkedin.com/c ompany/analytics-and-dataoracle-user-community

Spatial + Graph SIG bit.ly/Spatial-Graph-LinkedIn

Save the Date!

Analytics and Data Summit 2024

April 9-11, 2024 Oracle Conference Center Redwood Shores, California

www.andouc.org/andsummit2024

Data Exploration made easy with Oracle-ADS!

Phil Godfrey – Principal Data Analytics & Al Consultant

Introductions

Bio

- Principal Data Analytics & AI Consultant at Vertice.
- Over 10 years' experience working with data across various business sectors including finance, HR and healthcare.
- Data Science & Machine Learning experience across roles in Vertice and NHS Business Services Authority.
- Oracle ACE Associate.
- Outside of work I'm a keen photographer and set-up a photography business in January 2021.
- <u>https://www.etsy.com/shop/pgodfreyphotography</u>

Who We Are

Engage the Customer. Enhance the Data. Enable the Solutions.

What We Do

DATA TRANSFORMATION

- Data Analytics
- New Data Platform
- Oracle Financial Services Analytical Applications
- Data Lakehouse
- Data Warehouse
- Data Mesh

DATA DIGITAL SERVICES

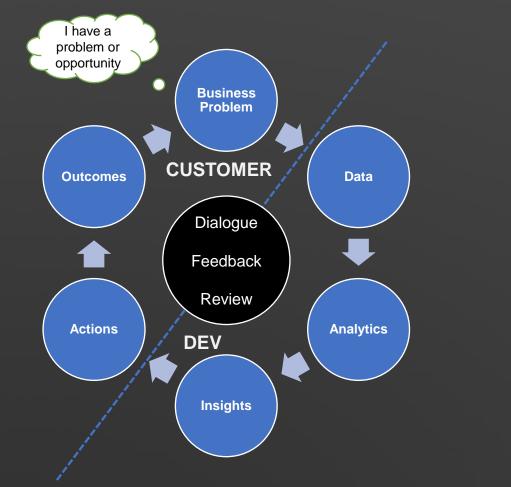
- AI, ML, Data Science
- Cloud Native
- Apps Modernisation Enablement
- DevOps and ML Ops

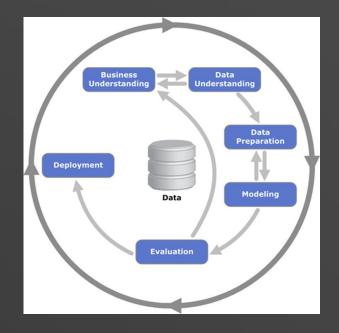
ORACLE

DATA PLATFORM

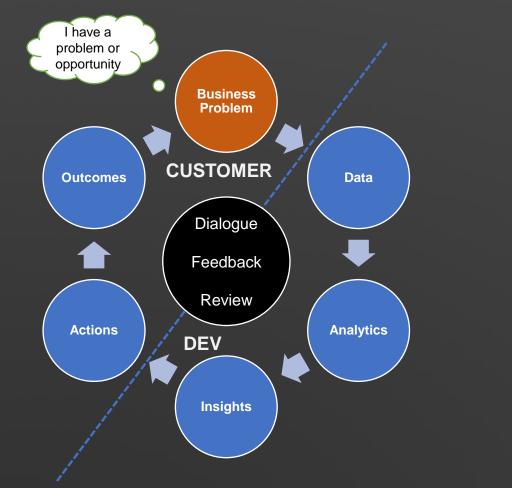
- Cloud Strategy
- Multi-Cloud (OCI, Azure & AWS)
- Hybrid Deployment
- Cloud@Customer (ExaC@C)
- SaaS Integration

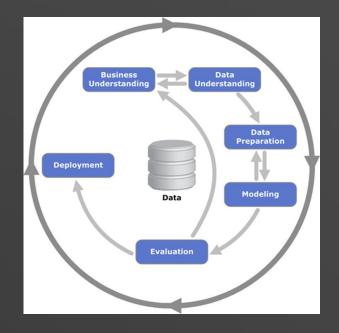
DATA MODERNISATION

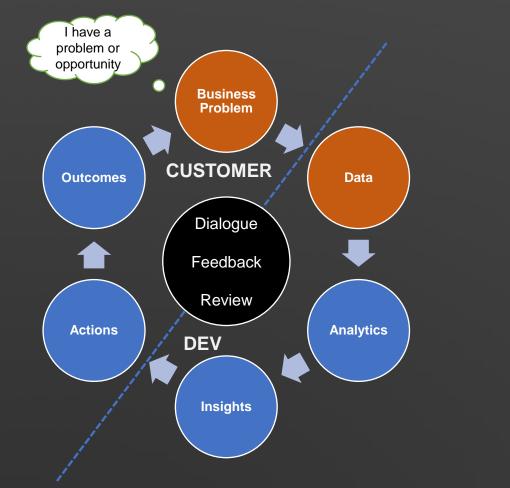

- Technology Debt
- Client Modernisation
- Database Consolidation
- Cloud Back-up / DR
- Cyber Security (Partner)

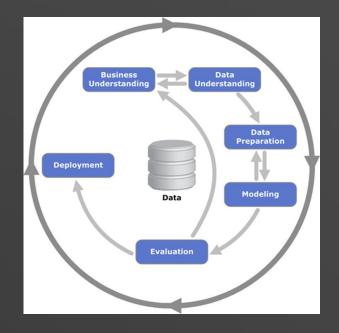

Aim

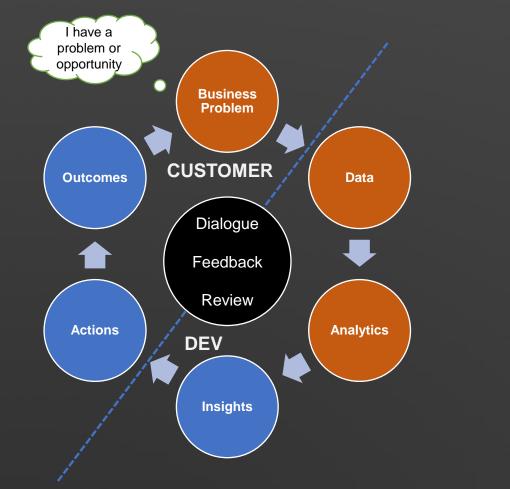
Work through Exploratory Data Analysis of Titanic data, showcase how Oracle-ADS (Accelerated Data Science SDK) can help!

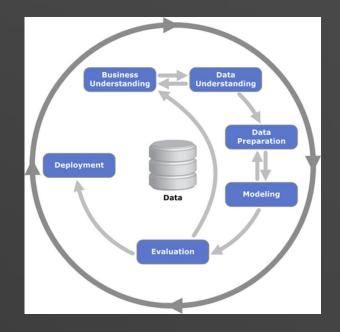

How?


- Utilise Titanic data that is freely available.
- Perform some typical EDA, to help understand the dataset in detail.
- Show you how you can use Oracle-ADS to help 🙂

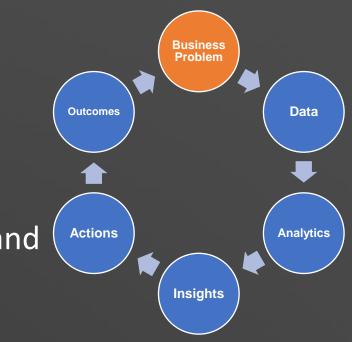



- Cross-industry standard process for data mining (CRISP-DM)
- Data mining is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems




- Cross-industry standard process for data mining (CRISP-DM)
- Data mining is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems

- Cross-industry standard process for data mining (CRISP-DM)
- Data mining is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems



- Cross-industry standard process for data mining (CRISP-DM)
- Data mining is a process of extracting and discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems

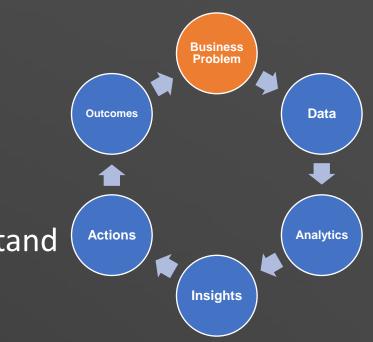
Business Problem

- Presented with a new dataset.
- As a Data Scientist / Analyst I need to explore and understand it:

Business Problem

- Presented with a new dataset.
- As a Data Scientist / Analyst I need to explore and understand it:

What does the dataset look like?

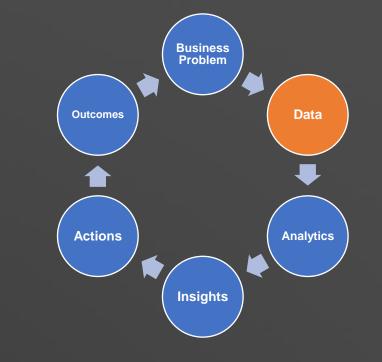

How many columns / rows does it have?

What are the data types?

Are there any missing values I need to worry about?

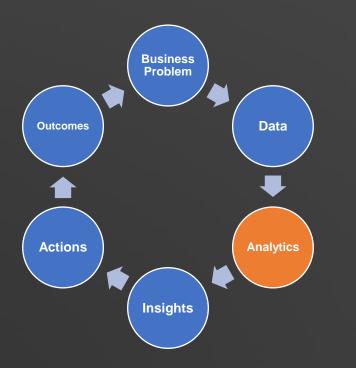
What should I do with those?

Etc...



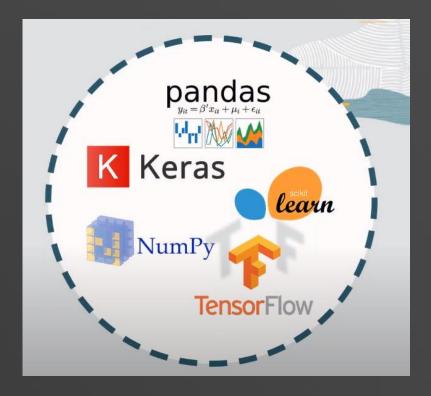
Data

- Utilizing Titanic dataset that is available from <u>Kaggle</u>.
 - Well-known dataset.
 - We can focus on Oracle-ADS, rather than needing to understand a complex dataset.
- 1 file required:
 - Train.csv


Note (Test.csv is also available)

• Data can be downloaded as csv's, or you can utilise the Kaggle API.

← →	C 🛱 kaggle.com/compet	litions/fitanic/data	😂 🔍 🕁 🔲 🚯 Relaunch to update 🗄
=	kaggle	Q Search	Sign In Register
+	Create	KAGGLE - GETTING STARTED PREDICTION COMPETITION - ONGOING	Submit Prediction
Ø	Home		
Φ	Competitions	Titanic - Machine Learning from Disaster	
	Datasets	Start here! Predict survival on the Titanic and get familiar with ML basics	a come d'according a constant a main a
ጼ	Models		
\diamond	Code		
	Discussions	Overview Data Code Models Discussion Leaderboard Rules	
ଡ	Learn		Files
\sim	More	Dataset Description	3 files
		Overview The data has been split into two groups:	Size 93.08 kB
		training set (train.csv) test set (test.csv)	Type csv
		 rest vert (rescusy) The training set should be used to build your machine learning models. For the training set, we provide the outcome (also known as the "ground ruth") for each passenger. Your model will be based on "features" like passengers' gender and class. You can also use feature engineering to create new features.	License Subject to Competition Rules


Exploratory Data Analysis in Oracle Data Science

Overview of the Oracle Data Science Service

- JupyterLab-based environment allows data scientists to experiment and develop models.
- Within a Jupyter lab you can:
 - Write code in Python
 - Access a variety of open-source libraries
 - Oracle Accelerated Data Science Python Library (ADS)

Oracle Accelerated Data Science (Oracle-ads)

- Oracle Accelerated Data Science SDK is a user-friendly Python toolkit that supports the data scientist through their entire end-to-end data science workflow.
- It speeds up common data science activities by providing tools that automate and simplify common data science tasks:
 - Model Deployment
 - Jobs
 - ML Pipelines
 - Data Flow
 - Object Storage
 - Vault
 - Autonomous Database.

Code to install:

python3 -m pip install oracle-ads

• ADS gives you an interface to manage the life cycle of machine learning models, from data acquisition to model evaluation, interpretation, and model deployment.

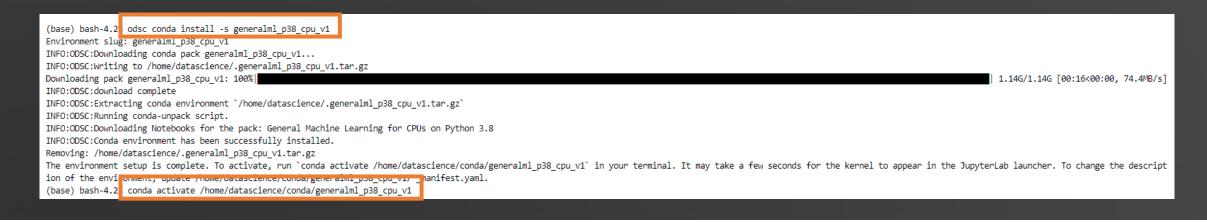
Oracle Accelerated Data Science (Oracle-ads)

 If you're looking for any further information, you can access the documentation here

ORACLE ADS v2.9.1	<pre> Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø</pre>
Q Search	PYPI V2.9.1 PYTHON 3.8 3.9 3.10 DOCS NOTEBOOK-EXAMPLES
	Oracle Accelerated Data Science (ADS)
GETTING STARTED:	Oracle Accelerated Data Science (ADS) is maintained by the Oracle Cloud Infrastructure Data Science service team. It speeds
Release Notes	up common data science activities by providing tools that automate and/or simplify common data science tasks, along with
Quick Start	providing a data scientist friendly pythonic interface to Oracle Cloud Infrastructure (OCI) services, most notably OCI Data Science, Data Flow, Object Storage, and the Autonomous Database. ADS gives you an interface to manage the lifecycle of machine learning models, from data acquisition to model evaluation, interpretation, and model deployment.
INSTALLATION AND CONFIGURATION:	With ADS you can:
Installation and Setup	 Read datasets from Oracle Object Storage, Oracle RDBMS (ATP/ADW/On-prem), AWS S3, and other sources into Pandas dataframes.
Authentication	 Easily compute summary statistics on your dataframes and perform data profiling.
CLI Configuration	Tune models using hyperparameter optimization with the ADSTuner tool.
Local Development	Generate detailed evaluation reports of your model candidates with the ADSEvaluator module.
Environment Setup	Save machine learning models to the OCI Data Science Models.
	 Deploy those models as HTTPS endpoints with Model Deployment.
OPERATORS:	Launch distributed ETL, data processing, and model training jobs in Spark with OCI Data Flow.
What Are Operators	Train machine learning models in OCI Data Science Jobs.
Getting Started	Manage the lifecycle of conda environments through the ads conda command line interface (CLI).
2	Distributed Training with PyTorch, Horovod and Dask
Forecasting Operator 🗸 🗸	t in the second s

Oracle Data Science Platform

Install conda environment


- Navigate to "Environment Explorer" for a list of published conda environments.
- Published and updated by Oracle on a regular basis.

Environment Explorer (j)		ANACONDA. 🗧 Q Search					
Conda Environments: Data Science (21 of 21) × Published (0 of 0) +	nstalled (0 of 0) + <u>Clear</u>			Arch	iitecture: ALL CPU	GPU Show Deprec	cated (0 of 40)
Conda Environments							
Name >	Environment Version	Туре	Language >	Architecture >	Created >	Size >	
Oracle AutoML and Model Explanation for Python 3.8	3.0 \$	Data Science	Python 3.8	CPU	1 week ago NEW	586.32 MB	··· 🔽
ONNX 1.13 for CPU on Python 3.9	1.0	Data Science	Python 3.9	CPU	1 week ago NEW	408.13 MB	~~ ~
Py Spark 3.2 and Big Data Service	2.0	Data Science	Python 3.8	CPU	2 months ago	2.11 GB	~ ~
Parallel Graph AnalytiX 23.1 and Oracle Property Graph 23.1 for CPU on Python 3.8	1.0	Data Science	Python 3.8	CPU	3 months ago	3.50 GB	~~ ~
ि General Machine Learning for CPUs on Python 3.8	1.0	Data Science	Python 3.8	CPU	6 months ago	1.14 GB	~ ~
lightgbm (v3.3.0), oracledb (v1.1.1), oracle-ads (v2.6.8), scikit-learn (v1.1.1), spacy (v3.3.1), xgboost (v1.5.0).	■ Descriptio	on					-

Install conda environment

- Navigate to "Terminal" and paste in the command (right).
- This will install the conda environment for us to use.

Cond	la Environments			a de la contra					WIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
_													
Name	>	Environm	ent Version	Туре	Language >	Architecture >	Created >	Size >					
CTU 888 Oracle AutoMLx	Oracle AutoML and Model Explanation for Python 3.8	3.0	\$	Data Science	Python 3.8	CPU	1 week ago NEW	586.32 MB	^				
	Oracle-ads (v2.8.4), Oracle AutoMLX (v23.2.0), scikit-learn (v1.1.1).		Description						-				
	Copy and run the following command in terminal window:	Ō	Oracle Labs brings their AutoML and Model Explanation packages together in the new automix library. To get started with the Oracle AutoML environment, review the notebook example getting-started ipynb from the Notebook Examples launcher button. For more details, and technical overview check out Oracle AutoML: A Fast and Predictive AutoML Pipeline										
	Source oci://service-conda-packs@id19sfcrra6z/service_pack/cpu		C Versions										
			Environment Ve	ersion Langua	ge	Architecture	Created	Size					
			3.0	Python	3.8	CPU	1 week ago NEW	586.32 MB					
			2.0	Python	3.8	CPU	3 months ago	930.25 MB					

- We need to import any relevant packages we want to use.
- Import our Titanic training data from a csv using pandas.

Import Packages

import pandas as pd
import ads

Load Data (csv file from Kaggle using train.csv

Import data
titanic_df = pd.read_csv('.../Data/train.csv')

[12]: # Overview (head)
 titanic_df.head()

[12]:	Passenger	d Survi	ved	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0		1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1		2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	!	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3		4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	ļ.	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

[13]: # Overview (tail)
 titanic_df.tail()

[13]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

Check descriptive statistics of Titanic data

[11]: # Descriptive statistics titanic_df.describe()

[11]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
	max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

This gives us a few early insights to the data already, which is why its so important to start here.

- Total samples are 891 or 40% of the actual number of passengers on board the Titanic (2,224).
- Survived is a categorical feature with 0 or 1 values.
- Around 38% samples survived, which is representative of the actual survival rate at 32%.

Check for missing values

We know which fields we have in the dataset, and the size of the dataset, but it's important to consider any missing data. We can do this using a function we've created draw_missing_data_table

- We can see that **Age** has 177 missing values in our Train data.
- For other values we may want to impute missing values, but for missing ages, we'll leave them as blank.
- **Cabin** has over 3/4 of values missing, so we could **drop** this variable from our Train data.

[15]: # Analyse missing data

draw_missing_data_table(titanic_df)

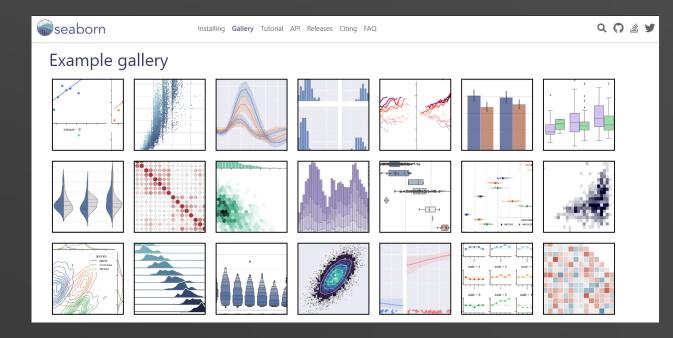
[15]:		Total	Percent
	Cabin	687	77.104377
	Age	177	19.865320
	Embarked	2	0.224467
	Passengerld	0	0.000000
	Survived	0	0.000000
	Pclass	0	0.000000
	Name	0	0.000000
	Sex	0	0.000000
	SibSp	0	0.000000
	Parch	0	0.000000
	Ticket	0	0.000000
	Fare	0	0.000000

 As well as the .describe() function in previous slide, Pandas also includes groupby operators.

Function	Description
count	Number of non-null observations
sum	Sum of values
mean	Mean of values
mad	Mean absolute deviation
median	Arithmetic median of values
min	Minimum
max	Maximum
mode	Mode

[21]:	# Sum Ł titanio	by sex df.groupby	('Sex').	sum()
[21]:		Passengerld	Survived	Pclass
	Sex			
	female	135343	233	678
	male	262043	109	1379

[23]:	: # Count by sex titanic_df.groupby('Sex').count()											
[23]:		Passengerld	Survived	Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	Sex											
	female	314	314	314	314	261	314	314	314	314	97	312
	male	577	577	577	577	453	577	577	577	577	107	577

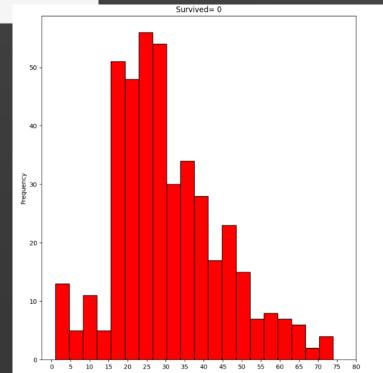

- As well as the .describe() function in previous slide, Pandas also includes groupby operators.
- We can pass in multiple variables into the group by, e.g., **Survived / PassengerId**.

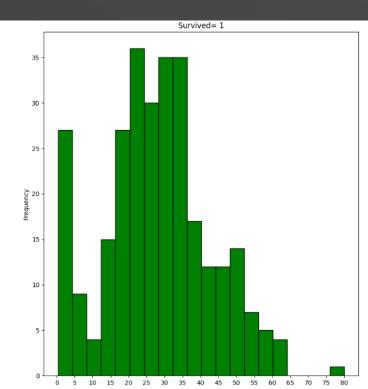
[24]:	<pre># count Passenger ID group by Survived titanic_df.groupby('Survived')['PassengerId'].count()</pre>
[24]:	Survived Ø 549 1 342 Name: PassengerId, dtype: int64

Function	Description
count	Number of non-null observations
sum	Sum of values
mean	Mean of values
mad	Mean absolute deviation
median	Arithmetic median of values
min	Minimum
max	Maximum
mode	Mode

- The next step of our data exploration would be to **visualize the information**.
- It can often be that visualizations can return additional insights.
- We'll use 2 libraries for this:
 - pyplot (from matplotlib)
 - seaborn

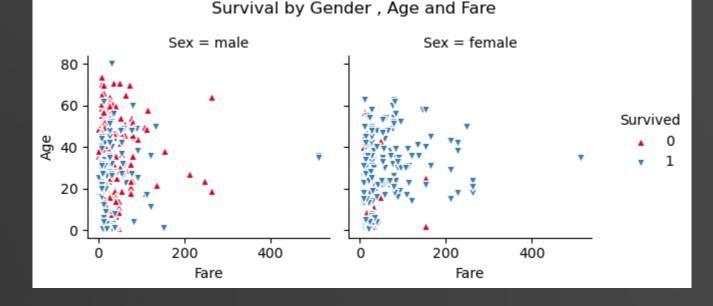
Both popular packages for visualizations in Python




import matplotlib.pyplot as plt
import seaborn as sns

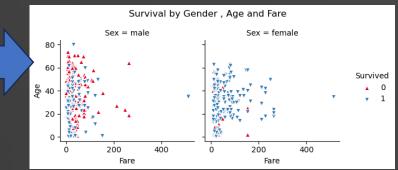
Plot Frequency of those who Survived by Age
f,ax=plt.subplots(1,2,figsize=(20,10))

titanic_df[titanic_df['Survived']==0].Age.plot.hist(ax=ax[0],bins=20,edgecolor='black',color='red')
ax[0].set_title('Survived= 0')
x1=list(range(0,85,5))
ax[0].set_xticks(x1)


titanic_df[titanic_df['Survived']==1].Age.plot.hist(ax=ax[1],color='green',bins=20,edgecolor='black')
ax[1].set_title('Survived= 1')
x2=list(range(0,85,5))
ax[1].set_xticks(x2)
plt.show()

- Facet Grid to show multiple plots in a single cell – often very useful when comparing attributes.
- There are varying types of plots we can use, such as **scatterplots**.
- These are very customizable, We can also set Palletes, Margin Titles, Legends and Subtitles

g = sns.FacetGrid(
 titanic_df,
 hue="Survived",
 col="Sex",
 margin_titles=True,
 palette="Set1",
 hue_kws=dict(marker=["^", "v"]))
g.map(plt.scatter, "Fare", "Age",edgecolor="w").add_legend()
plt.subplots_adjust(top=0.8)
g.fig.suptitle('Survival by Gender , Age and Fare');


- There's lots of code written, just to perform some basic EDA.
- There are many pieces of code I could write and throw away as part of this process.

<pre># function def draw_missing_data_table(df): total=titanic_df.isnull().sum().sort_values(ascending=False) percent=(titanic_df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)*100 missing_data=pd.concat([total,percent],axis=1,keys=['Total','Percent']) return missing_data</pre>	[15]: En Pass
# Plot Frequency of those who Survived by Age	Fassi
<pre>f,ax=plt.subplots(1,2,figsize=(20,10)) titanic_df['Survived']==0].Age.plot.hist(ax=ax[0],bins=20,edgecolor='black',color='red') ax[0].set_title('Survived= 0') x1=list(range(0,85,5)) ax[0].set_xticks(x1)</pre>	50 - 40 -
<pre>titanic_df['itanic_df['Survived']==1].Age.plot.hist(ax=ax[1],color='green',bins=20,edgecolor='black') ax[1].set_title('Survived= 1') x2=list(range(0,85,5)) ax[1].set_xticks(x2) plt.show()</pre>	20- 10-
	0 5 10 15 20 25
<pre>g = sns.FacetGrid(titanic_df, hue="Survived", col="Sex", margin_titles=True, palette="Set1", hue_kws=dict(marker=["^", "v"]))</pre>	80 - 60 - 20 -
g.map(plt.scatter, "Fare", "Age",edgecolor="w").add_legend() plt.subplots_adjust(top=0.8)	0-
g fig suntitle('Sunvival by Gender Age and Fare'):	0

g.fig.suptitle('Survival by Gender , Age and Fare');

[15]:	Total	Percent
Cabir	6 87	77.104377
Age	e 177	19.865320
Embarkee	1 2	0.224467
Passengerle	d 0	0.000000

Exploratory Data Analysis – Oracle-ADS

By nature, exploratory data analysis can be very time consuming.

• There are some pre-packaged functions within Oracle-ADS that can help.

Oracle-ADS – Show_in_notebook

• Oracle ADS show_in_notebook method creates a preview of all the basic information about the data set.

[5]: # Import libraries import ads from ads.dataset.factory import DatasetFactory

[6]: # Convert the data set to an ADSDataset requried for "show_in_notebook" function titanic_ds = DatasetFactory.open(titanic_df, target="Survived").set_positive_class(1)

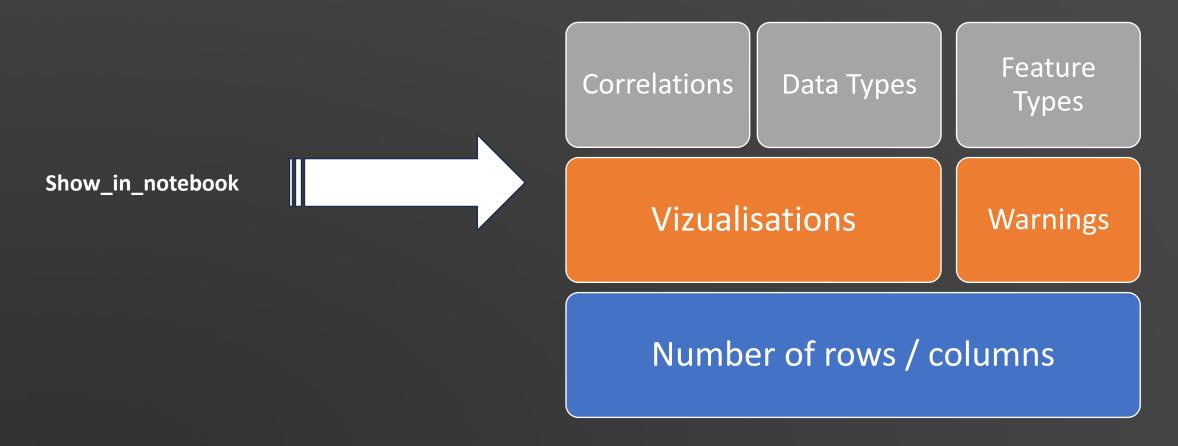
Oracle-ADS – Show_in_notebook

• Oracle ADS show_in_notebook method creates a preview of all the basic information about the data set.

[5]: # Import libraries import ads from ads.dataset.factory import DatasetFactory

[6]: # Convert the data set to an ADSDataset requried f titanic_ds = DatasetFactory.open(titanic_df, tar

Loading a dataset with DatasetFactory can be slower than simply reading the same dataset with Pandas.


Added data visualizations and data profiling benefits of the ADSDataset object.

()	File Edit V	/iew Run Kernel Git Tabs Settings <mark>H</mark> elp		
	Oracle-AD	DS exploration.ipynl ×		
	8 + %		Python [conda	env:generalml_p
0		Oracle-ADS		
		Oracle ADS show_in_notebook method creates a preview of all the basic information about the data set.		
2		It gives a great overview the data, number of yows and columns, data types/feature types of each column, visualisations of each column, correlations, and warnings about columns. These warnings are things lik columns for example.	e sparsley populated,	or highly skewe
°¢°	[]:	<pre># Import libraries import ads from ads.dataset.factory import DatasetFactory</pre>		
	[]:	<pre># Convert the data set to an ADSDataset requried for "show_in_notebook" function titanic_ds = DatasetFactory.open(titanic_df, target="Survived").set_positive_class(1)</pre>		
≣	[]:	<pre>titanic_ds.show_in_notebook()</pre>		
*				
0	s_ 2 @ 📢	Python [conda env:generalml_p38_cpu_v1] Idle Saving completed Mode: Comman	d 🛞 Ln 2, Col 38	Oracle-ADS exp

Oracle-ADS – Show_in_notebook

Excellent summary & overview of the data

Oracle-ADS – Suggest_recommendations

- Oracle-ADS isn't just limited to `show_in_notebook` feature.
- Oracle ADS has built-in functions to help with data cleaning, using the suggest_recommendations` function.
- Runs in one line of code.

B + X □ □ ▶ ■ C → Code ∨

Python [conda env

missing

missing

zeros

zeros

high-cardinality

high-cardinality

high-cardinality

7	WARI	NING	(S)	found	
---	------	------	-----	-------	--

Age has 177.0 (19.9%) missing values. Consider remove the column or replace null values.

Cabin has 687.0 (77.1%) missing values. Consider remove the column or replace null values.

Name has a high cardinality: every value is distinct

Ticket has a high cardinality: 681 distinct values

Cabin has a high cardinality: 148 distinct values

SibSp has 608 (68.24%) zeros)

Parch has 678 (76.09%) zeros)

]: titanic_ds.suggest_recommendations()

2 👜 🚯 Python [conda env:generalml_p38_cpu_v1] | Idle

Saving completed

Mode: Edit 🛞 Ln 1, Col 37 O

Oracle-ADS

Show_in_notebook

▼ Warnings (7)
7 WARNING(S) found
Age has 177.0 (19.9%) missing values. Consider remove the column or replace null values.
Cabin has 687.0 (77.1%) missing values. Consider remove the column or replace null values.

Suggest_recommendations

[6]:	titanic_ds.suggest_recommendation	5()			
[6]:					Code
	Message	Variables	Suggested	Action	
	Contains mostly unique values(100.00%)	Passengerld	Drop	Drop	.drop_columns(["PassengerId"])
				Do nothing	
	Contains missing values(19.87%)	Age	Fill missing values with mean	Drop	.drop_columns(["Age"])
				Fill missing values with mean	.fillna({"Age": 29.6991})
				Fill missing values with median	.fillna({"Age": 28.0})
				Fill missing values with frequent	.fillna({"Age": 24.0})
				Fill missing values with constant	.fillna({"Age": "constant"})
				Do nothing	
	Contains missing values(77.10%)	Cabin	Drop	Drop	.drop_columns(["Cabin"])
				Fill missing values with frequent	.fillna({"Cabin": "C23 C25 C27"})
				Fill missing values with constant	.fillna({"Cabin": "constant"})
				Do nothing	
	Contains missing values(2)	Embarked	Fill missing values with frequent	Drop	.drop_columns(["Embarked"])
				Fill missing values with frequent	.fillna({"Embarked": "S"})
				Fill missing values with constant	.fillna({"Embarked": "constant"})
				Do nothing	

Oracle-ADS

Manual

- We can now take these recommendations and apply them in "Data Preparation / Data Cleaning" stages.
- This would be manual process there are times this is required, and useful.

Programmatically

- Oracle-ADS can do this for us, using another function auto_transform.
- This will apply all recommended changes from suggest_recommendations to return a transformed dataset.

다 README 🛞 Code of conduct 🏘 UPL-1.0 license 화 Security

Oracle Accelerated Data Science (ADS)

PYPI V2.10.0 PYTHON 3.8 | 3.9 | 3.10 PCODE STYLE BLACK

The <u>Oracle Accelerated Data Science (ADS) SDK</u> is maintained by the Oracle Cloud Infrastructure (OCI) <u>Data Science</u> <u>service</u> team. It speeds up common data science activities by providing tools that automate and simplify common data science tasks. Additionally, provides data scientists a friendly pythonic interface to OCI services. Some of the more notable services are OCI Data Science, Model Catalog, Model Deployment, Jobs, ML Pipelines, Data Flow, Object Storage, Vault, Big Data Service, Data Catalog, and the Autonomous Database. ADS gives you an interface to manage the life cycle of machine learning models, from data acquisition to model evaluation, interpretation, and model deployment.

ORACLE ADS v2.10.0

💭 File Edit View Run Kernel Git Tabs Settings Help

Oracle-ADS exploration.ipynl •

0

♦

跲

°¢

Ξ

*

B + X □ □ ► ■ C → Code

[6]: titanic_ds.suggest_recommendations()

 \sim

Code				
	Action	Suggested	Variables	Message
.drop_columns(["PassengerId"])	Drop	ld Drop	Passengerld	Contains mostly unique values(100.00%)
	Do nothing			
.drop_columns(["Age"])	Drop	Fill missing values with mean	Age	Contains missing values(19.87%)
.fillna({"Age": 29.6991})	Fill missing values with mean			
.fillna({"Age": 28.0})	Fill missing values with median			
.fillna({"Age": 24.0})	Fill missing values with frequent			
.fillna({"Age": "constant"})	Fill missing values with constant			
	Do nothing			
.drop_columns(["Cabin"])	Drop	Drop	Cabin	Contains missing values(77.10%)
.fillna({"Cabin": "C23 C25 C27"})	Fill missing values with frequent			
.fillna({"Cabin": "constant"})	Fill missing values with constant		nissing values(77.10%) Cabin	
	Do nothing			
.drop_columns(["Embarked"])	Drop	Fill missing values with frequent	Embarked	Contains missing values(2)
.fillna({"Embarked": "S"})	Fill missing values with frequent			
.fillna({"Embarked": "constant"})	Fill missing values with constant			
	Do nothing			

[]: transformed_titanic_ds = titanic_ds.auto_transform()

[]: transformed_titanic_ds.visualize_transforms()

0 🛐 2 👜 🔶 Python [conda env:generalml_p38_cpu_v1] | Idle

Saving completed

2

Mode: Command 🛞 Ln 1, Col 53 Or

Python [conda env

Oracle-ADS – auto_transform

- We can see that Passenger ID and Cabin have been dropped.
- There are no missing values present in **Age** or **Embarked**.
- Age missing populated with mean value.
- Embarked missing populated with most frequent.
- Runs in one line of code.

tra	ansformed	d_titan	ic_ds.head()							
	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
0	False	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	5
1	True	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38.0	1	0	PC 17599	71.2833	
2	True	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	True	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	False	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

[17]: def draw_missing_data_table(transformed_titanic_ds): total=transformed_titanic_ds.isnull().sum().sort_values(ascending=False) percent=(transformed_titanic_ds.isnull().sum()/transformed_titanic_ds.isnull().count()).sort_values(ascending=False)*100 missing_data=pd.concat([total,percent],axis=1,keys=['Total','Percent']) return missing_data

[18]: # Analyse missing data

[18]

draw_missing_data_table(transformed_titanic_ds)

:		Total	Percent
	Survived	0	0.0
	Pclass	0	0.0
	Name	0	0.0
	Sex	0	0.0
	Age	0	0.0
	SibSp	0	0.0
	Parch	0	0.0
	Ticket	0	0.0
	Fare	0	0.0
	Embarked	0	0.0

Summary

Oracle Accelerated Data Science (Oracle-ads)

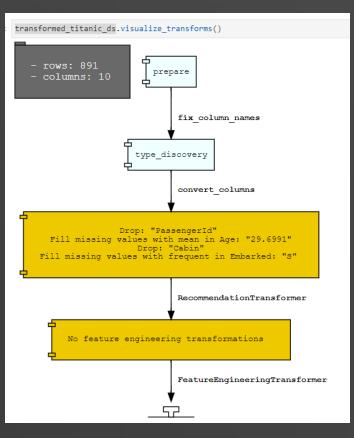
The package also contains a number of methods in the ADS SDK to automatically **visualize** a dataset and understand it in greater detail.

Show_in_notebook()

provides a comprehensive preview of a data set's basic information

1	titanic_ds.show_in_notebook()
	▼ Summary
	Type: BinaryClassificationDataset
	891 Rows, 12 Columns
	Column Types:
	categorical: 6 features ordinal: 4 features continues: 2 features
	Note: Visualizations use a sampled subset of the dataset, this is to improve plotting performance. The sample size is calculated to be statistically significant within the confidence level: 95 and confidence interval: 1.0. The sampled data has 891 rows
	 The confidence <i>level</i> (refers to the long-term success rate of the method, that is, how often this type of interval will capture the parameter of interest. A specific confidence <i>interval</i> gives a range of plausible values for the parameter of interest
	> Features (12)
	➤ Correlations
	Warnings (7)


suggest_recommendations()


displays issues and recommends changes to resolve data issues

<pre>titanic_ds.suggest_recommendations()</pre>									
				Code					
Message	Variables	Suggested	Action						
Contains mostly unique values(100.00%)	Passengerld	Drop	Drop	.drop_columns(["PassengerId"])					
			Do nothing						
Contains missing values(19.87%)	Age	Fill missing values with mean	Drop	.drop_columns(["Age"])					
			Fill missing values with mean	.fillna({"Age": 29.6991})					
			Fill missing values with median	.fillna({"Age": 28.0})					
			Fill missing values with frequent	.fillna({"Age": 24.0})					
			Fill missing values with constant	.fillna({"Age": "constant"})					
			Do nothing						
Contains missing values(77.10%)	Cabin	Drop	Drop	.drop_columns(["Cabin"])					
			Fill missing values with frequent	.fillna({"Cabin": "C23 C25 C27"})					
			Fill missing values with constant	.fillna({"Cabin": "constant"})					
			Do nothing						
Contains missing values(2)	Embarked	Fill missing values with frequent	Drop	.drop_columns(["Embarked"])					
			Fill missing values with frequent	.fillna({"Embarked": "S"})					
			Fill missing values with constant	.fillna({"Embarked": "constant"})					

Oracle Accelerated Data Science (Oracle-ads)

It contains several methods in the ADS SDK to automatically **transform** a dataset

visualize_transforms()

visualizes the transformation that has been performed on a data set

Accelerated Data Science – with shortcuts!

- Oracle Data Science includes several keyboard shortcuts that can greatly enhance your productivity and save you time.
- Here are a few of my favourites that you might try...

Accelerated Data Science – with shortcuts!

0	File Edi	it Vi	ew Ru	n Kerr	el	Git Tabs Settings Help	
	🛛 Laun	cher			\times	Cracle-ADS exploration.ipynl ×	
	• +	*		▶		C ► Markdown ~	Python [co
0							
			Keyt	oar	d S	Shortcuts	
•							
60			CTRL &	ENTER	- run	runs the current cell	
ß			CUTET 2	ENTER	- 0	runs the current cell and moves down to the next cell	
°0			JITLI 0	LNIEK	- 10		
			ALT & E	NTER -	runs	uns the current cell and inserts a new cell below	
			CTRL &	/ to c	ommer	ment or uncomment the selected cell	
			ESC & M	- Con	/ert	rt the current cell to a markdown cell	
≣							
			ESC & Y	- Con	/ert	rt the current cell to a code cell	
*							

Accelerated Data Science – with shortcuts!

Ctrl+Enter: Run the current cell.

Shift+Enter: Run the current cell and move to the next cell.

Alt+Enter: Run the current cell and insert a new cell below.

Ctrl+/: Comment or uncomment the selected code.

Esc+M: Convert the current cell to a Markdown cell.

Esc+Y: Convert the current cell to a code cell.

Any Questions?

Vertice ORACLE Partner

Phil Godfrey

Principal Data Analytics & AI Consultant, Vertice

<u>Philip.Godfrey@verticecloud.com</u> @PhilipGodfrey11