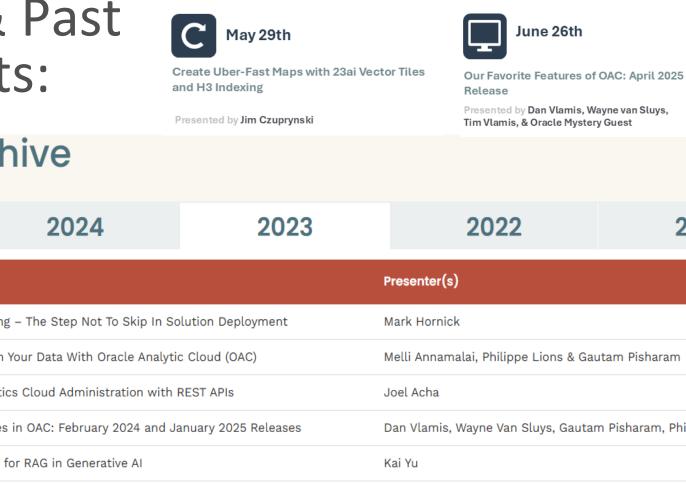
Techactors and batta

Create Uber-Fast Maps with 23ai Vector Tiles and H3 Indexing


Jim Czuprynski Chief StoryTeller Zero Defect Computing, Inc.

Copyright © 2025, AnDOUC. All rights reserved.

Future & Past TechCasts:

TechCast Archive

Beyond Vector Searches: Leveraging Knowledge Graphs in RAG for Smarter AI

Presented by Craig Shallahamer

	2025	2024	2023	2022	2021	:	2020
Date	Title			Presenter(s)		Replay	Download(s)
May 1	Data and Model Monitoring – The Step Not To Skip In Solution Deployment			Mark Hornick		Video	Slides
Apr 3	Exploring Relationships in Your Data With Oracle Analytic Cloud (OAC)			Melli Annamalai, Philippe Lions & Ga	utam Pisharam	Video	Slides
Mar 6	Automating Oracle Analytics Cloud Administration with REST APIs			Joel Acha		Video	Slides
Feb 6	Our Favorite New Features in OAC: February 2024 and January 2025 Releases		Dan Vlamis, Wayne Van Sluys, Gauta	n Pisharam, Philippe Lions	Video	Slides	
Jan 23	Leveraging Vector Search for RAG in Generative AI		Kai Yu		Video	Slides	
Jan 9	The Oracle AI Microservices Sandbox for RAG Rapid Prototyping			Corrado De Bari, Mark Nelson, & John	n Lathouwers	Video	Slides

Submit a topic to share at https://andouc.org/techcasts/

www.andouc.org

Let's Connect

Who Am I, and What Am I Doing Here?

The Oracle ACE Program

400+ technical experts helping peers globally

- The Oracle ACE Program recognizes and rewards community members for their technical and community contributions to the Oracle community
- 3 membership levels: Director, Pro, and Associate
- Nominate yourself or a colleague at <u>ace.oracle.com/nominate</u>
- Learn more at <u>ace.oracle.com</u>

M

"There Is No Planet B": Shifting Priorities ...

Wind and Solar Overtake Coal Power for First Time in U.S. - Wall Street Journal, 13 March 2025

Overall, the U.S. installed 50 gigawatts of new solar capacity in 2024. ... Wind and solar *have overtaken coal in 24 states*, according to Ember, with Illinois the latest to join the ranks in 2024, following Arizona, Colorado, Florida and Maryland in 2023.

California now has 48% more EV chargers than gasoline nozzles in the state - State of California, 20 March 2025

In a significant milestone for the state, California now has 48% more public and shared private EV chargers than the number of gasoline nozzles. The California Energy Commission (CEC) estimates there are about 120,000 gas nozzles in the state, compared to 178,000 public and shared private chargers.

Study: EV charging stations boost spending at nearby businesses

- MIT News, 4 September 2024

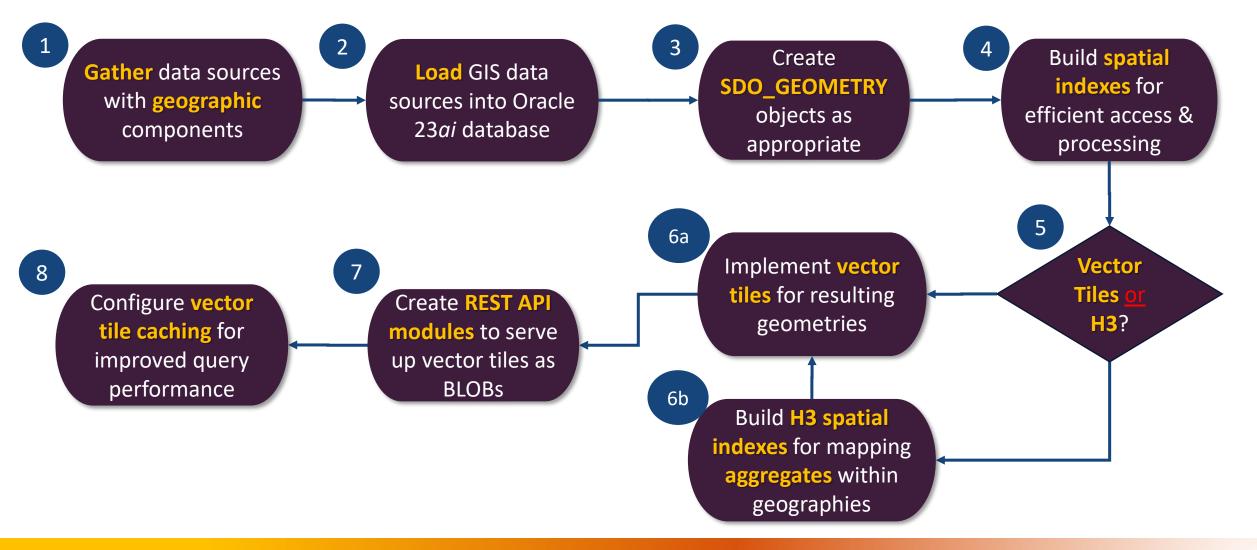
"The positive impacts of EV charging stations on businesses *are not constrained solely to some high-income neighborhoods*," Wang says. "It highlights the importance for policymakers to develop EV charging stations in marginalized areas, because they not only foster a cleaner environment, but also serve as a catalyst for enhancing economic vitality."

Business Case: Where Do We Locate All These Resources?

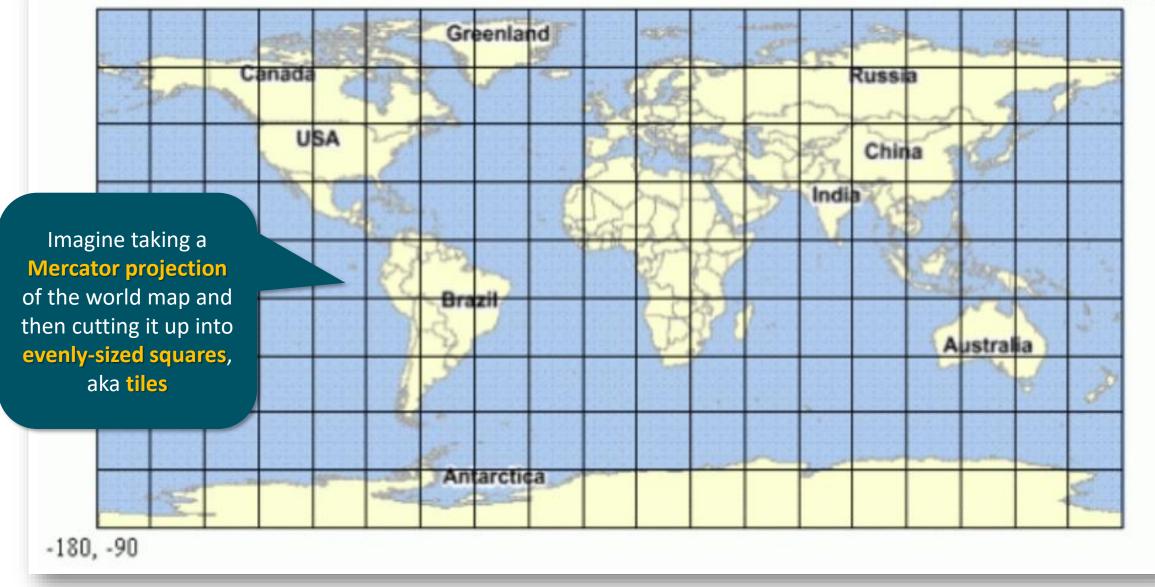
Solar, wind, and nuclear power generation strategies offer wildly divergent capabilities

Current and future alternative energy production sites are **unevenly distributed** across the USA

Solar and wind are weather-dependent ... so reliable battery storage systems to capture excess power should be centrally-located

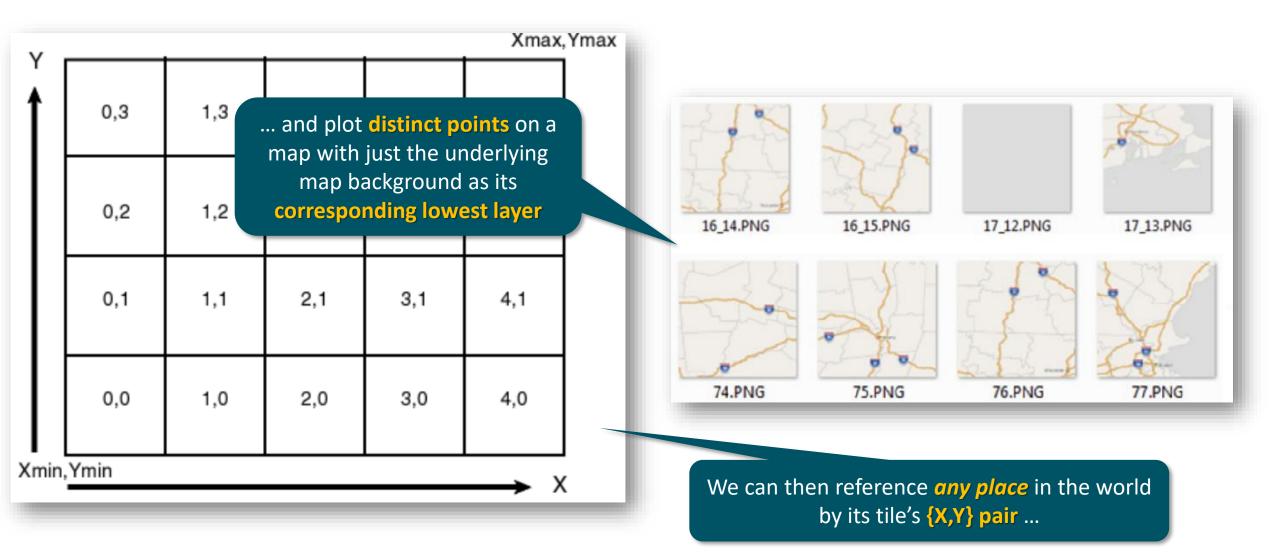

Storage systems should be built near **existing and future electrical grid access points** to minimize power loss over long distances

Steps for Implementing Vector Tiles and H3 Indexing

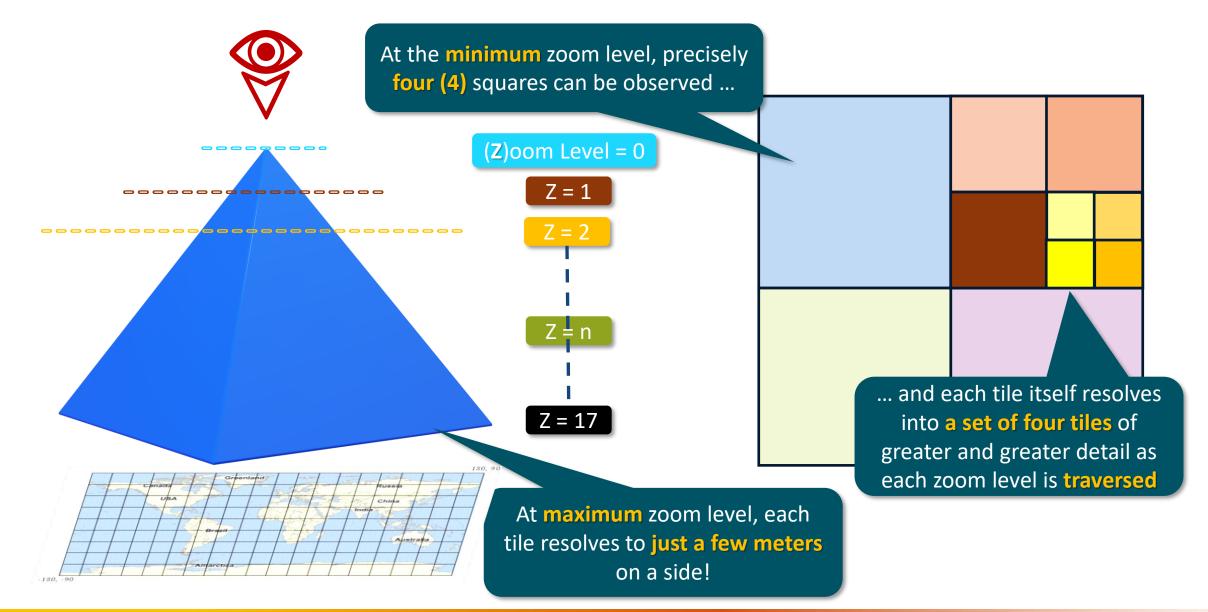


Vector Tiles

Photo by Brandon Griggs


Understanding Vector Tiles: Visualizing a Series of Ever-Smaller Squares

180,90


Analytics and Data

Understanding Vector Tiles: Visualizing a Series of Ever-Smaller Squares

Understanding Vector Tiles: Visualizing a Series of Ever-Smaller Squares

Handling Vector Tiles: SDO_UTIL Functions and Procedures

Procedure or Function	Purpose	
GET_VECTORTILE	Generates a BLOB that represents a Mapbox Vector Tile (MVT)	
GET_TILE_ENVELOPE	Converts a tile address back into a tile envelope (i.e. an SDO geometry describing a square)	

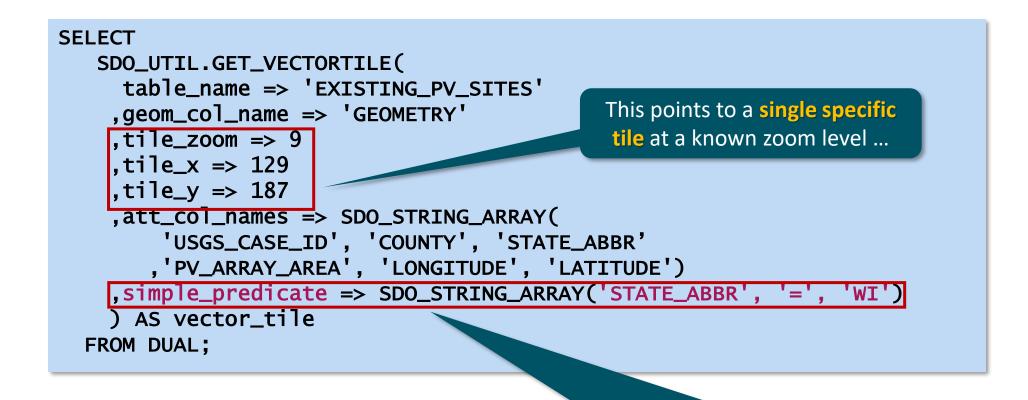
Yep, it's really that simple! Of course, the devil is in the details <u>here</u>

GET_VECTORTILE: A Simple Example

SELECT SDO_UTIL.GET_VECTORTILE(table_name => 'EV_CHARGING_STATIONS' -- table name geom_col_name => 'GEOMETRY' -- geometry column name att_col_names => SDO_STRING_ARRAY('CITY' ,'STATE_ABBR' ,'LONGITUDE' **,'LATITUDE')** -- other table attributes . tile_x => 129 -- tile x tile_y => 187 -- tile y tile_zoom => 9 -- tile zoom) AS gobbledygook;

This query retrieves data from the specified table, its standard columns, and one with a datatype of SDO_GEOMETRY ...

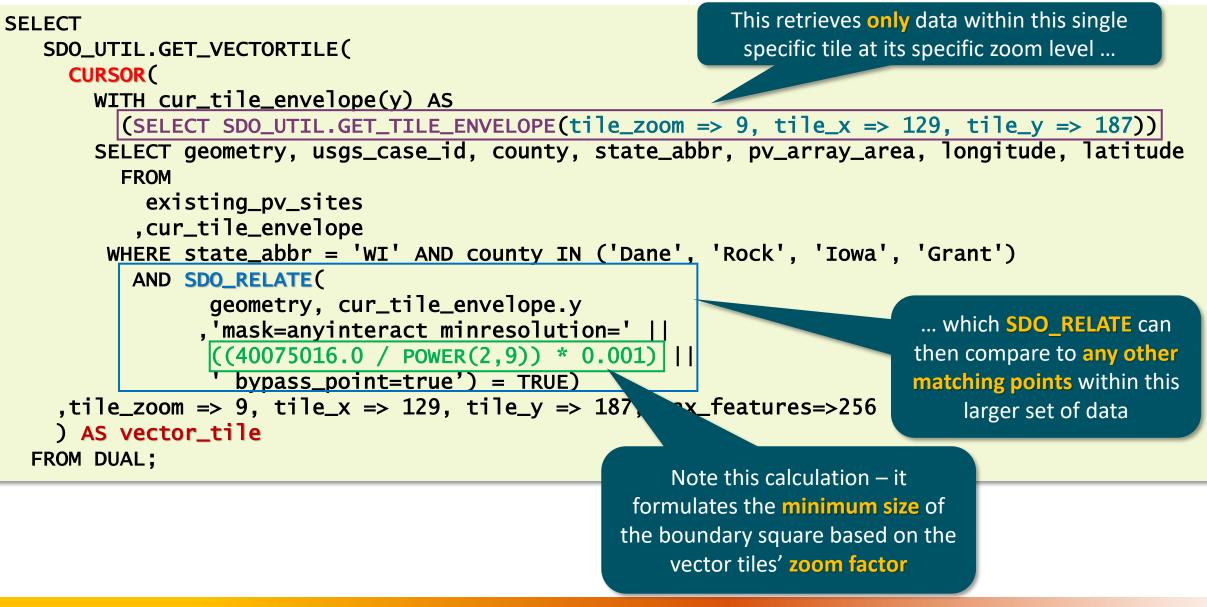
... but <u>only</u> for this **specific X:Y tile** found at this **specified (Z)oom level**



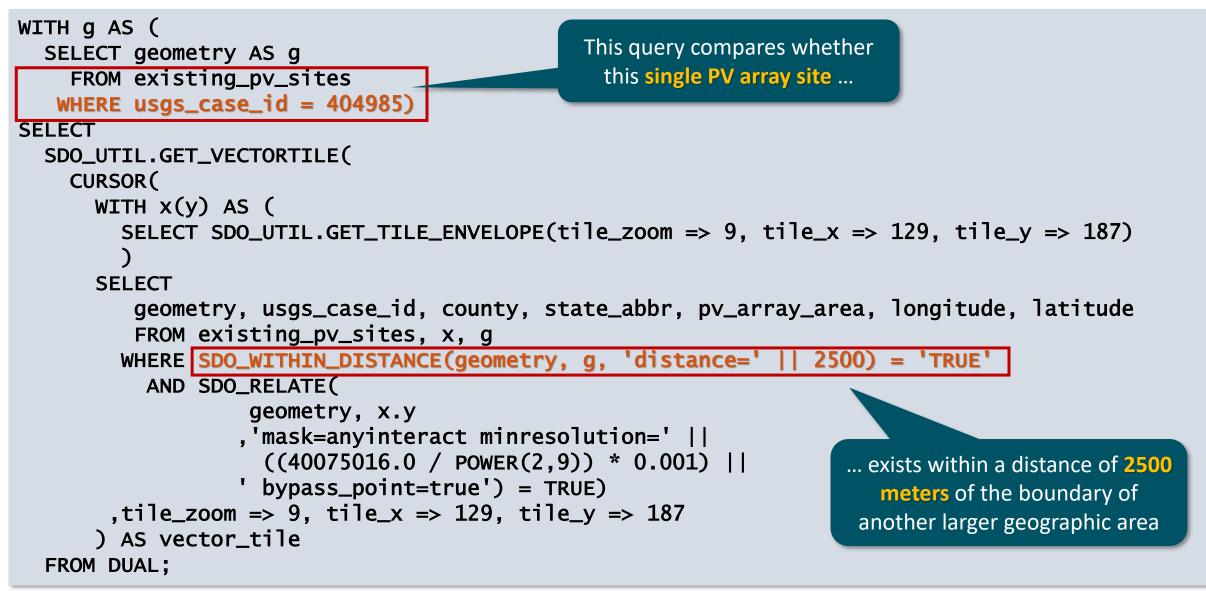
GET_VECTORTILE: A Simple Example

<pre>, geom_col_name => 'GEOMFTR , att_col_names => SDO_STRING_ARRAY(</pre>	G_STATIONS' table name Y' geometry column name ript Output × ▶ Query Result × Query Result × SQL All Rows Fetched: 1 in 0.534 seconds
, 'STATE_ABBR'	1 (BLOB) S View Value X Information Saved Text
<pre>, tile_x => 129 tile > , tile_y => 187 tile > , tile_zoom => 9 tile</pre>	□□ □□NYAN SPATIAL□(€ x□□�□ □LAYER□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
) AS gobbledygook;	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
but to a compatible <i>mapping tool,</i> this is a rich source of points, polygons ,	Johnson Creek □'(´¬û €@" □Õå"€ °0VÀ" □Kª¶à �E@" □}□⊅dóSVÀ" □x]¿`7 �E@" □□□£SVÀ" Westfield □, ¨û Ã @" □TŒgĐRVÀ" □¾ -Xª□ E@" □ËbbóqRVÀ" □qÈ □Ò �E@" □š#+¿♠TVÀ" □Sun Prairie □%ã ²Ñ9•E@" □≪Xü¦ ºPVÀ" □ ÒÝu6•E@" □ÜønNQVÀ" □¼ @_° □ŽE@" □Cn † □∂SVÀ" □x ^*6æ □ñ □8•E@" □p%;6□QVÀ" □Ø□Aà7•E@" □Qòê□□QVÀ" □□-\$`t—E@" □™(BêvMVÀ" □¬»Ã7•E@" IJ™ �E@" □Â ½20ÕSVÀ" □ð] >6•E@" □:œ H□QVÀ" □ □ ↓ ↓
and descriptors!	Cottage Grove" □qæWs€ŽE@" □ñ~Ü~ùJVÀ" □□J�`i'E@" □×ċ□öPRVÀ" □êL�ÇÂ"E@" □Þ÷feC

Analytics and Data

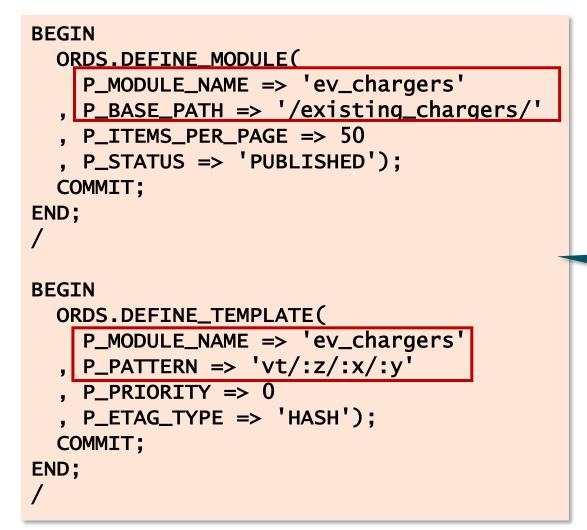

GET_VECTORTILE: Filtering Data Before Tile Creation

... and you can also use simple WHERE clause selection criteria to **limit retrieval of specific data** within that vector tile



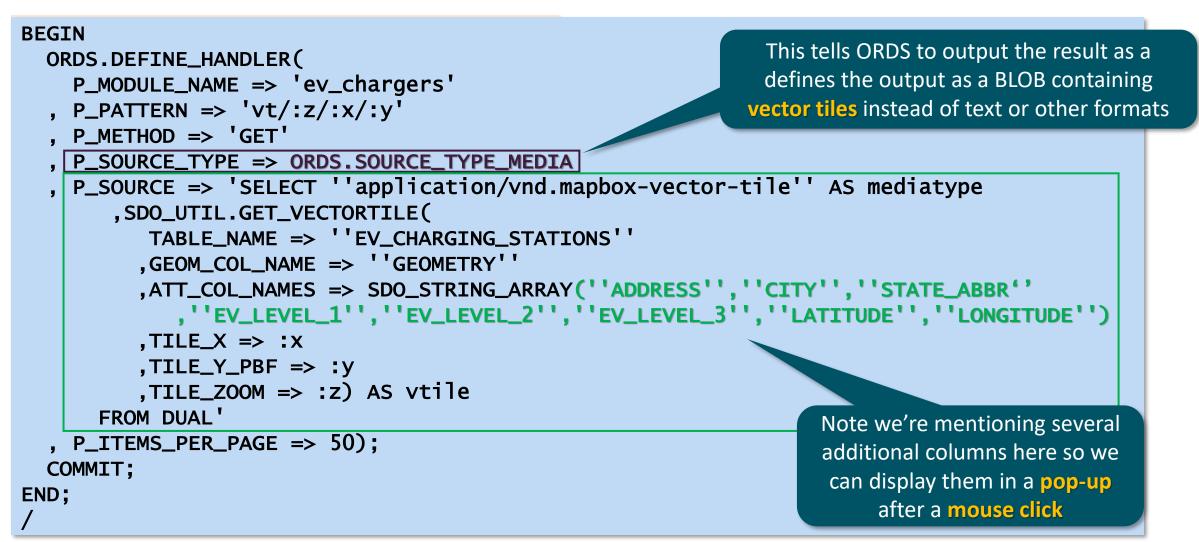
Using GET_TILE_ENVELOPE With GET_VECTORTILE

GET_VECTORTILE and Other Spatial Functions: A Final Complex Example

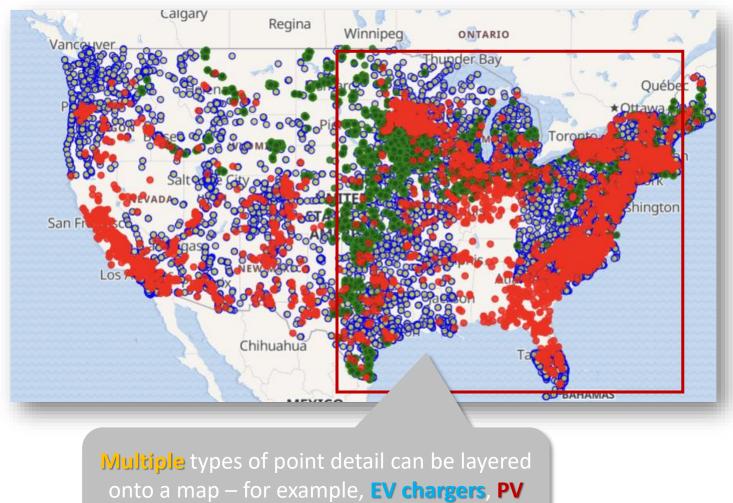


Demo: Leveraging Vector Tiles

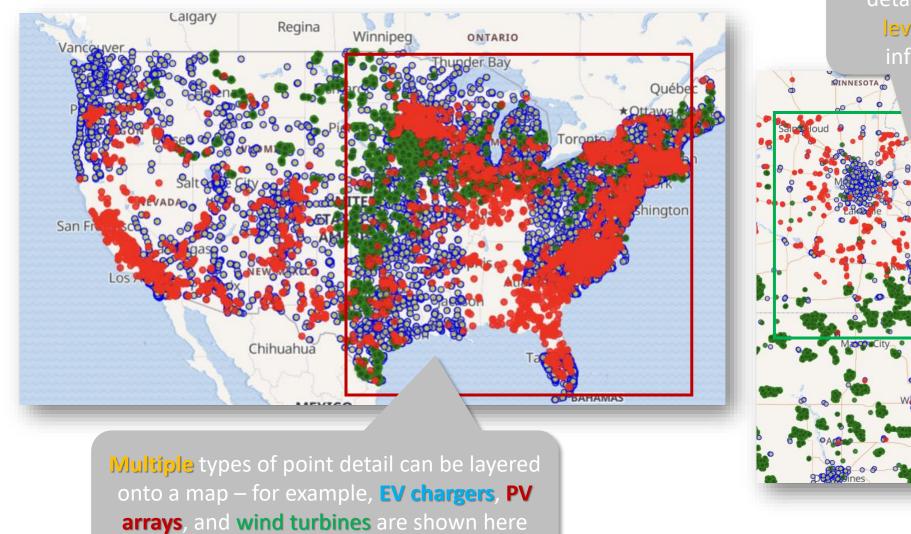
Photo by Simon L @ Unsplash


Accessing Vector Tiles Via ORDS REST APIs

First, create the ORDS REST API module and template ...

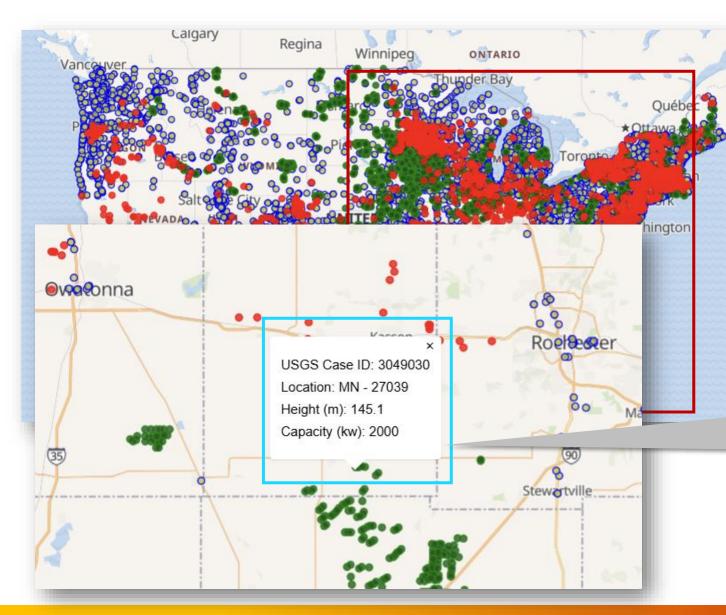


Accessing Vector Tiles Via ORDS REST APIs



Displaying Vector Tiles in Multiple Layers

arrays, and wind turbines are shown here


Displaying Vector Tiles in Multiple Layers

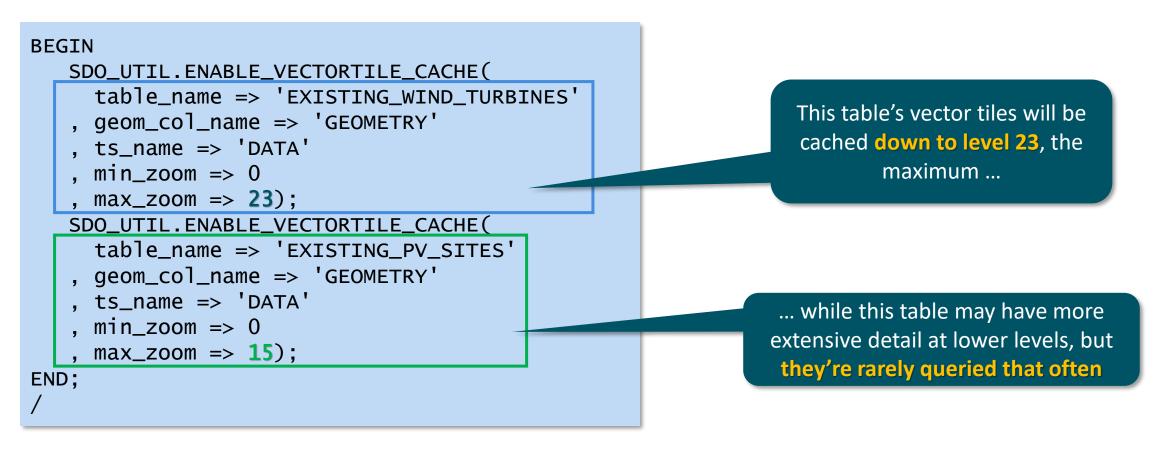
We can also drill down to additional detail at lower and lower zoom levels to discover additional information at each level ...

CRACLE USER COMMUNITY

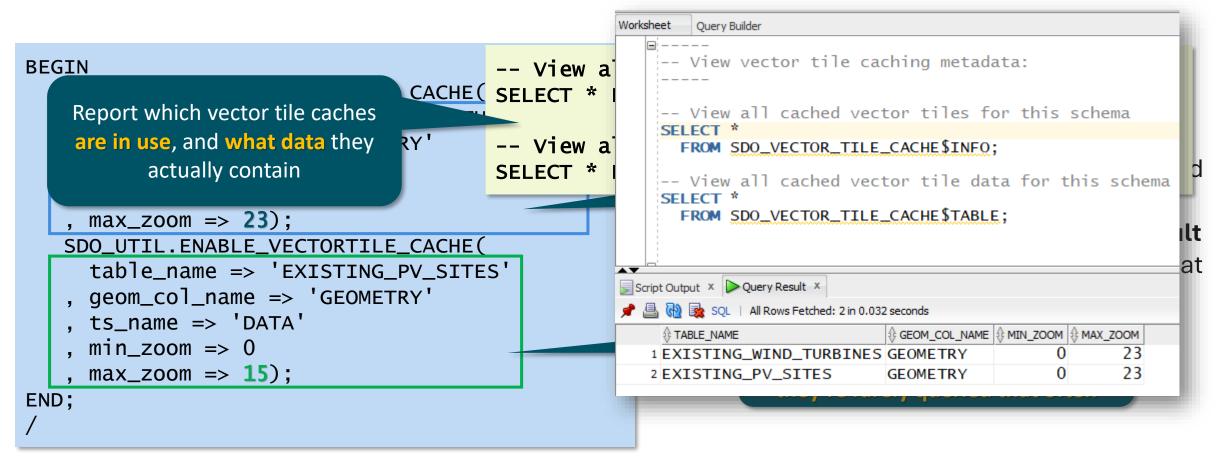
Displaying Vector Tiles in Multiple Layers

We can also drill down to additional detail at lower and lower zoom levels to discover additional information at each level ... MINNESOTA

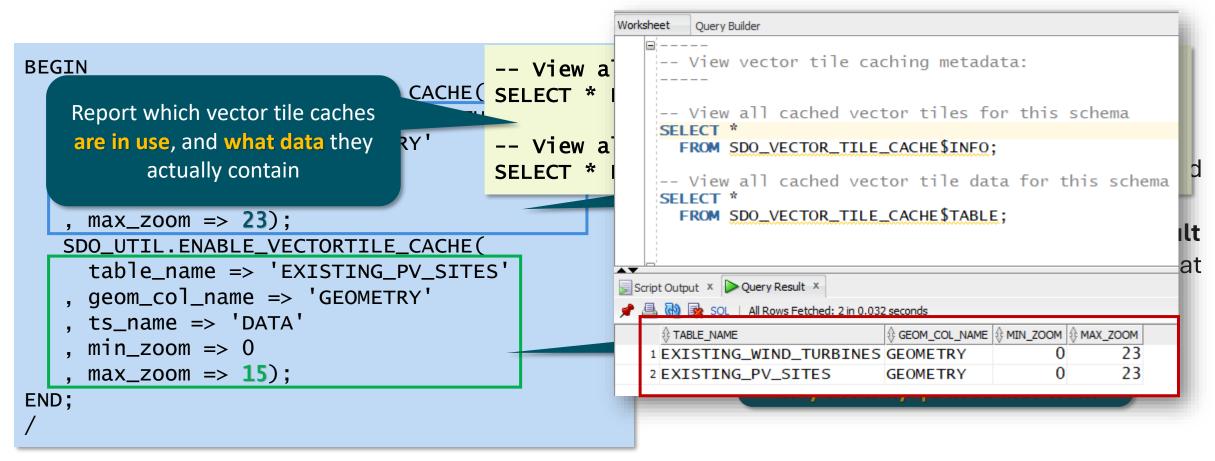
... and with a little more coding, we can display additional details about individual points – in this case, the **height** and **generation capacity** of a single **wind turbine**

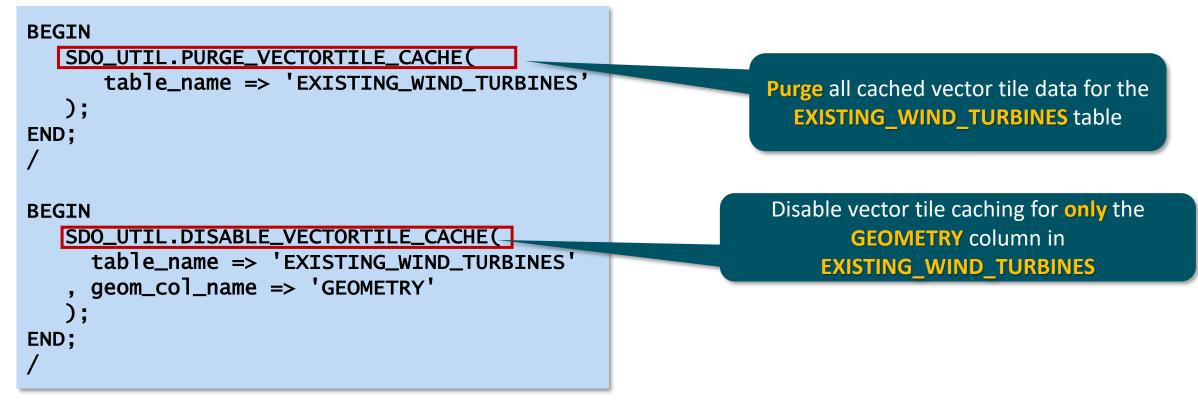

Vector Tile Caching

```
BEGIN
   SDO_UTIL.ENABLE_VECTORTILE_CACHE(
     table_name => 'EXISTING_WIND_TURBINES'
   , geom_col_name => 'GEOMETRY'
    ts_name => 'DATA'
    min_zoom => 0
   , max_zoom => 23);
   SDO_UTIL.ENABLE_VECTORTILE_CACHE(
     table_name => 'EXISTING_PV_SITES'
   , geom_col_name => 'GEOMETRY'
     ts_name => 'DATA'
    min_zoom => 0
    max_zoom => 15);
END;
```

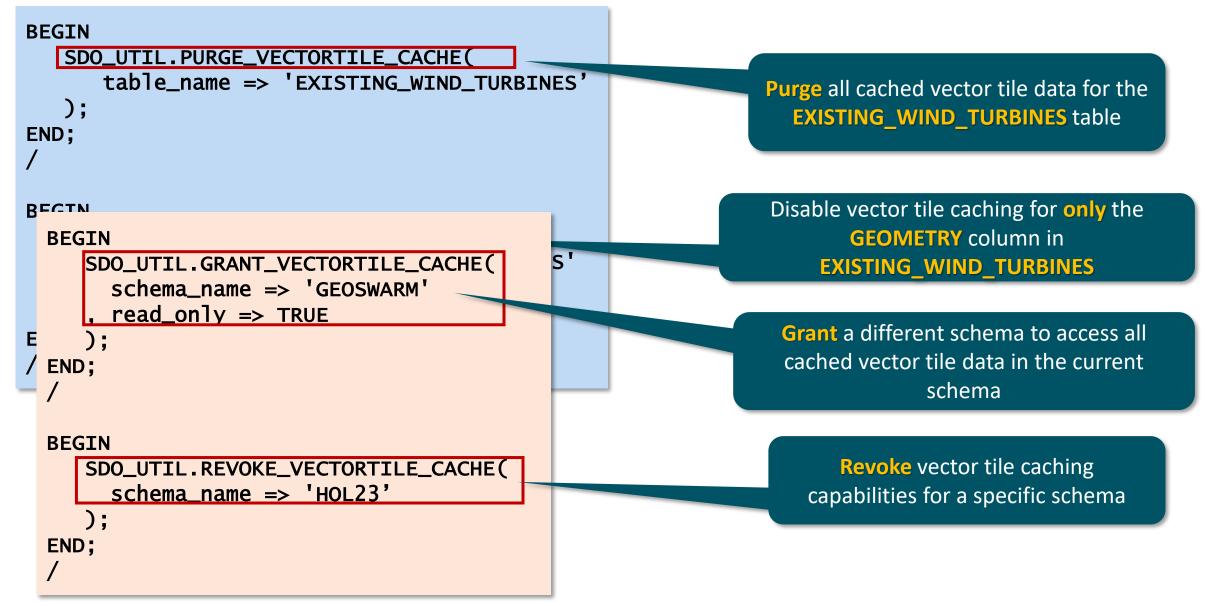

Oracle 23*ai* also offers the option to **cache vector tiles** for frequent re-use

- Grantable across schemas, should the need arise
- Analogous to the ability to cache SQL result sets for queries that gather a lot of data that changes infrequently (for example, the master product list of an automotive company's vehicles)





<pre>BEGIN Vie CACHE(SELECT Report which vector tile caches are in use, and what data they actually contain , max_zoom => 23); SDO_UTIL.ENABLE_VECTORTILE_CACHE(table_name => 'EXISTING_PV_SITES' , geom_col_name => 'GEOMETRY' , ts_name => 'DATA' , min_zoom => 0 , max_zoom => 15);</pre>	<pre>T * View all cached vector tiles for this schema SELECT * EW a FROM SDO_VECTOR_TILE_CACHE\$INFO;</pre>
View all cached vector tile data for this sche SELECT * FROM SDO_VECTOR_TILE_CACHE\$TABLE; Script Output × Vector Vector Tile_Cache\$table; Script Output × Vector Ve	ema
TILE_KEY & TABLE_NAME 17A2C435616FF1399E2929C9074CBB95B27F951B EXISTING	


Analytics and Date

Vector Tile Caching: Managing Retention and Access

Vector Tile Caching: Managing Retention and Access

Hexagonal Hierarchical (H3) Spatial Indexing

H3 Spatial Indexing: Why Our Uber Driver Always Finds Us.

These polygons are aligned edgeto-edge without any gaps ...

... and they're composed of a series of ever-smaller polygons until they reach a coverage space of about one square meter

...

081263FFFFFFFFF 0822607FFFFFFFF 0832601FFFFFFFFF 0832605FFFFFFFFFF

Every polygon has a unique H3 Key which intrinsically maps to the hierarchy of larger and smaller polygons

Exhaustive detailed information on the H3 standard is here

Back in November 2018, engineers at Uber built a new **geographic indexing system** that covers every square meter of our planet as a series of 110 **hexagons** (and 12 **pentagons**)

H3 SDO_UTIL Functions & Procedures: The Basics

Procedure or Function	Purpose	
H3_KEY	Computes H3 cell for a given geodetic point and returns requested statistic for the given H3 level	
H3_MEMBER	Returns the MBR of the given H3 cell	
H3_PARENT	Computes containing H3 cell (64-bit (8 byte RAW)) for given cell based on the H3 hierarchy	
H3SUM_CREATE_TABLE	Creates an H3 summary table for geodetic point data	
H3SUM_AS_TABLE	Returns rows from an H3 summary table as table of type H3SUM_TAB_T	
H3SUM_GET_CURSOR	Creates a cursor for results of searching an H3 summary table with specified level number and search MBR	
H3SUM_VECTORTILE	Creates and returns specified MVT vector tile from an H3 summary table created with H3SUM_CREATE_TABLE	

Combining Disparate GIS Datasets Based On H3 KEY Values

<pre>SELECT h3key , COUNT(pv_case_id) AS num_h3_locations</pre>	
, SUM(facility_capacity_ac) AS tot_pv_ac_cap	
, SUM(facility_capacity_dc) AS tot_pv_dc_cap	
, SUM(turbine_capacity) AS tot_wt_cap	SELECT pv.h3key
FROM (, pv.pv_case_id
WITH pV AS (, pv.state_abbr
SELECT usgs_case_id AS pv_case_id	, pv.scace_abbi
, state_abbr	
·	, pv.pv_array_area
, county	, pv.facility_capacity_ac
, pv_array_area	, pv.facility_capacity_dc
, facility_capacity_ac	, wt.wt_case_id
, facility_capacity_dc	, NVL(wt.turbine_capacity,0) AS turbine_capacity
, SDO_UTIL.H3_KEY(longitude, latitude,	FROM pv, wt
FROM existing_pv_sites)	WHERE pv.h3key = wt.h3key
,wt AS (ORDER BY py state_abbr, py.county)
SELECT usgs_case_id AS wt_case_id	GROUP BY h3key;
, state_abbr	
, county	
, turbine_capacity	so these two areas can be
, SDO_UTIL.H3_KEY(geometry, 5) AS h3key	
FROM existing_wind_turbines)	Joined together at that same
	resolution to see what overlaps
	occur in those geographies

Combining Disparate GIS Datasets Based On H3 KEY Values

<pre>SELECT h3key , COUNT(pv_case_id) AS num_h3_ , SUM(facility_capacity_ac) AS , SUM(facility_capacity_dc) AS , SUM(turbine_capacity) AS tot FROM (WITH pv AS (SELECT usgs_case_id AS p</pre>	5 tot_pv_ac_cap 5 tot_pv_dc_cap . c_wt_cap	 LECT pv.h3key , pv.pv_ca , pv.state , pv.count	two areas car se_1d _abbr	eed at least s ; we can calc pacities for bo	ulate the <mark>c</mark>	ombined	power
, state_abbr	H3KEY	NUM_H3_LOCATIONS	TOT_PV_AC_CAP	TOT_PV_DC_CAP	TOT_WT_CAP		
, county	085262693FFFFFF	3	3	4.2	1980		
, pv_array_area	08529A16BFFFFFF	350	17955	19621	1050000		
<pre>, facility_capacity_ac , facility_capacity_dc</pre>	0852A1073FFFFFF	1	2.5	3	1500	pacity	
SDO LITTL H3 KEV(longit	0852A314FFFFFFF	84	260	400	168000	pacity	
FROM existing_pv_sites	0852A33B7FFFFFF	10	32.4	42.4	15000		
,wt AS (08548860FFFFFFF	50	500	710	99370		
SELECT usgs_case_id AS v	085464823FFFFFF	100	2612.5	3435	253200		
, state_abbr	0852A3353FFFFFF		43.9	60.2	2000		
, county	0852A333BFFFFFF	4	14.28	19.7	6000		
, turbine_capacity	08526e26fffffff	107	642	823.9	184255		
, <u>SDO_UTIL.H3_KEY(geomet</u>	085275ABBFFFFFF	48	7200	9196.8	122400		
FROM existing_wind_tur	085283047FFFFFF	2	8.1	11.6			
• • •	085266013FFFFFF	42	84	117.6			
	08548DA8FFFFFFF		1.5	1.9	0		
	08527524FFFFFFF		3.4	4.6	0		

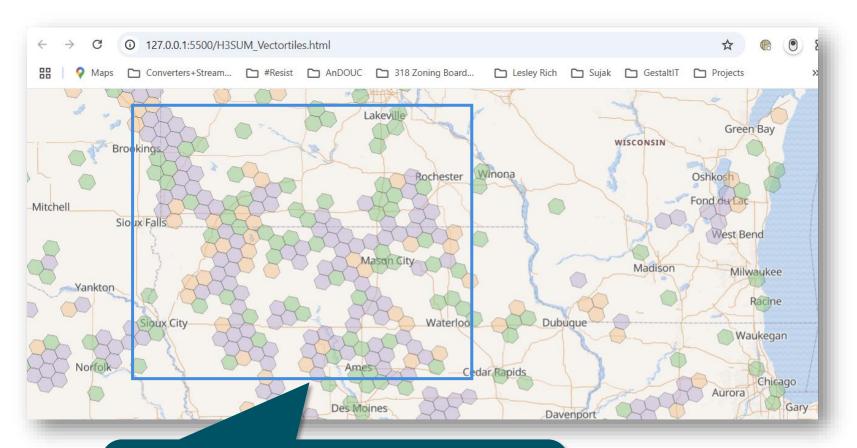
H3 SDO_UTIL Functions & Procedures: Cell Boundaries, Areas, & Accuracy

Procedure or Function	Purpose		
H3_BASE_CELL	Returns H3 base cell (64-bit, 8 byte RAW) matching given H3 cell		
H3_BOUNDARY	Computes a polygon representing the given cell		
H3_CENTER	Computes center of the given H3 cell		
H3_PENTAGON_AREA	Returns size of a pentagon at given resolution		
H3_PENTAGON_EDGELEN	Returns length of an edge of a pentagon at given resolution		
H3_RESOLUTION	Returns resolution of an H3 cell from 0 (coarsest) to 15 (finest)		
H3SUM_ESTIMATE_RESOLUTION	Provides an H3 resolution returning <i>approximately</i> requested number of hexes in given tile		

H3 SDO_UTIL Functions & Procedures: Cell-Level

Procedure or Function	Purpose		
H3_NUM_CELLS	Returns number of H3 cells covering the Earth at the specified resolution		
H3_HEX_AREA	Returns minimum, maximum or average area of hexes for given H3 level		
H3_HEX_EDGELEN	Returns minimum , maximum or average edge length (EDGELEN) of hexes at the given resolution		
H3_IS_CLASS3	Returns BOOLEAN value that determines if the given cells at the given resolution are "Class 3" in Uber's H3 system		
H3_IS_PENTAGON	Returns BOOLEAN value that determines whether a given cell is a pentagon (instead of a hexagon) or not		
H3_IS_VALID_CELL	Returns TRUE if the given H3 key is correctly formed and identifies an H3 cell; otherwise, the procedure returns FALSE		

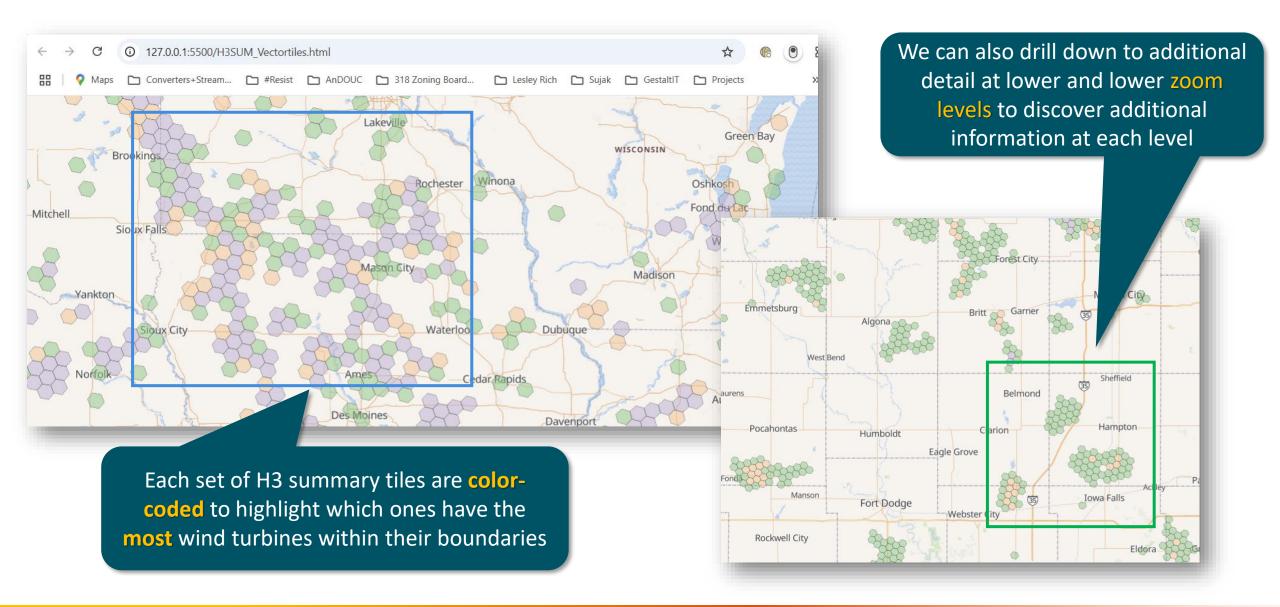
Demo: Vector Tiles and H3 Indexing In Combination


Photo by Simon L @ Unsplash

H3 Indexes: Creating a Summary Table

DROP TABLE IF EXISTS h3sum_wind_turbines;	
<pre>DELETE FROM user_sdo_geom_metadata WHERE table_name = 'H3SUM_WIND_TURBINES';</pre>	This describes which tables to use as source and targe t of the H3 summary table operation
BEGIN	
SDO_UTIL.H3SUM_CREATE_TABLE(
<pre>table_out => 'H3SUM_WIND_TURBINES' table_in</pre>	
<pre>, table_in => 'EXISTING_WIND_TURBINES'</pre>	
<pre>, geomcol_spec => 'GEOMETRY'</pre>	ADACTTY MANY TUDDING CADACTTY AVC
<pre>, col_spec => '1,CNT;TURBINE_CAPACITY,MIN;TURBINE_C/ max_b2_lowel => 7</pre>	APACITY, MAX; TURBINE_CAPACITY, AVG'
, max_h3_level => 7	
),	
	d this specifies which column(s) should
END; Since there are 16 levels of H3 key be as	gregated per function (e.g. MIN, MAX,
hierarchy, we can set a reasonable limit	AVG) or simply counted (CNT)
for the total number of levels at which	
data should be aggregated	

Analytics and Data


Displaying Vector Tiles Leveraging H3 Summary Information

Each set of H3 summary tiles are **colorcoded** to highlight which ones have the **most** wind turbines within their boundaries

Analytics and Data

Displaying Vector Tiles Leveraging H3 Summary Information

Vector Tiling and H3 Indexing: Lessons Learned

Vector tiles offer extremely fast display of huge numbers of disparate points in myriad mapping layers and across different zoom levels

Likewise, **H3 Indexing** offers the ability to display aggregate data **extremely efficiently** within modern GIS systems

These features are accessible through Oracle Spatial Studio and MapBox HTML JavaScript ... and may be coming soon to a future Oracle APEX release

Oracle Live Labs, Blog Posts, and Articles on New Spatial Features

Video: Add Fast and Scalable Maps to your Apps with Vector Tiles and H3 in Oracle Database 23ai https://youtu.be/cQOcNAwHHDc?si=kBJxU8D4VF2VsJ1y

Blog: Add Fast and Scalable Maps to your Apps with Vector Tiles and H3 in Oracle Database 23ai https://blogs.oracle.com/database/post/make-better-maps-for-your-apps-with-spatial-vector-tiles-and-h3-in-oracle-database-23ai

Video: AskTom Session on OAC, Vector Tile Caching, and SELECT AI: https://www.youtube.com/watch?v=bKFfTfNUx2A&ab_channel=OracleDevelopers

H3 Indexing:

https://docs.oracle.com/en/database/oracle/oracle-database/23/spatl/h3-indexing.html

Vector Tiles & Vector Tile Cache:

https://docs.oracle.com/en/database/oracle/oracle-database/23/spatl/vector-tiles.html#GUID-77640B2D-C3B2-438F-A46A-0AAD78DB7AB9

Useful Resources, Documentation, and Technical Details

Oracle Spatial & Graph Developers Guide:

https://docs.oracle.com/en/database/oracle/oracle-database/23/vsiad/aivs_genarch.html

Mapbox GL JavaScript Guides: https://docs.mapbox.com/mapbox-gl-js/guides/

Mapbox GL JavaScript Feature Examples: https://docs.mapbox.com/mapbox-gl-js/example/

H3: Uber's Hexagonal Hierarchical Spatial Index: https://www.uber.com/blog/h3/

H3-js - Hexagons in the Browser Video: https://www.youtube.com/watch?v=BsMIrBHLfLE

Other Interesting Reading

California now has 48% more EV chargers than gasoline nozzles in the state

https://www.gov.ca.gov/2025/03/20/california-now-has-48-more-ev-chargers-than-gasoline-nozzles-in-the-state/

Wind and Solar Overtake Coal Power for First Time in U.S.

https://www.wsj.com/articles/wind-and-solar-overtake-coal-power-for-the-first-time-in-the-u-s-a52e9d8f

Solar Farms Have a Superpower Beyond Clean Energy

https://www.nytimes.com/2024/09/05/climate/solar-power-pollinators-wildlife.html

Promoters of clean-energy data centers in Virginia coal country unfazed by doubters

https://energynews.us/2024/09/10/promoters-of-clean-energy-data-centers-in-virginia-coal-country-unfazed-by-doubters/

Study: EV charging stations boost spending at nearby businesses

https://news.mit.edu/2024/study-ev-charging-stations-boost-nearby-business-spending-0904

IRA credits and energy demand continue to drive renewables investments

https://www.utilitydive.com/news/inflation-reduction-act-credits-energy-demand-investment-financing-trump/742485

Helpful Links –

ORACLE ANALYTICS VIDEOS: https://www.youtube.com/@OracleAnalytics/videos

OAC SEPTEMBER NEW FEATURES VIDEOS BY ORACLE: https://bit.ly/OACSept24Features

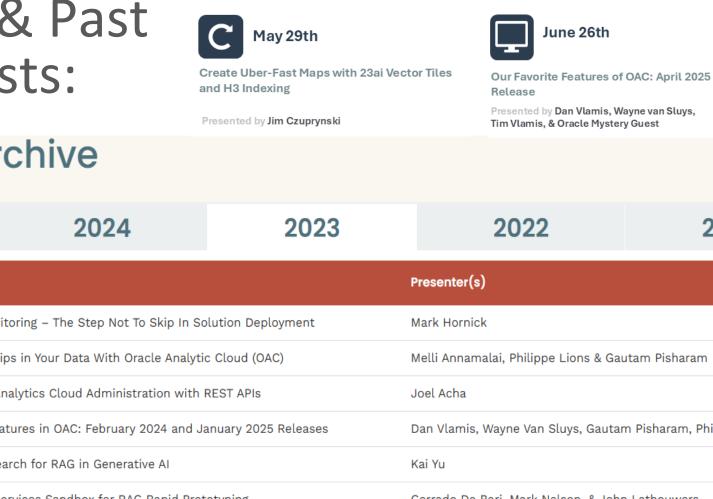
OAC NEW FEATURES DOCUMENTATION BY ORACLE:

https://docs.oracle.com/en/cloud/paas/analytics-cloud/acswn/index.html#GUID-CFF90F44-BCEB-49EE-B40B-8D040F02D476

ORACLE ANALYTICS COMMUNITY:

https://community.oracle.com/products/oracleanalytics

ORACLE ANALYTICS LIBRARY/EXAMPLES:


https://www.oracle.com/business-analytics/data-visualization/examples/

ORACLE ANALYTICS LIVE DEMOS: https://www.oracle.com/business-analytics/data-visualization/demos/

Future & Past TechCasts:

TechCast Archive

Beyond Vector Searches: Leveraging Knowledge Graphs in RAG for Smarter AI

Presented by Craig Shallahamer

2025		2024	2023	2022	2021	2020	
Date	Title			Presenter(s)		Replay	Download(s)
May 1	Data and Model Monitoring – The Step Not To Skip In Solution Deployment			Mark Hornick			Slides
Apr 3	Exploring Relationships in Your Data With Oracle Analytic Cloud (OAC)			Melli Annamalai, Philippe Lions & Gautam Pisharam			Slides
Mar 6	Automating Oracle Analytics Cloud Administration with REST APIs			Joel Acha			Slides
Feb 6	Our Favorite New Features in OAC: February 2024 and January 2025 Releases			Dan Vlamis, Wayne Van Sluys, Gautam Pisharam, Philippe Lions			Slides
Jan 23	Leveraging Vector Search for RAG in Generative AI		Kai Yu			Slides	
Jan 9	The Oracle AI Microservices Sandbox for RAG Rapid Prototyping		Corrado De Bari, Mark Nelson, & John Lathouwers			Slides	

Submit a topic to share at https://andouc.org/techcasts/

www.andouc.org

